Cascaded Segmentation-Detection Networks for Word-Level Text Spotting.

Siyang Qin, Roberto Manduchi
{"title":"Cascaded Segmentation-Detection Networks for Word-Level Text Spotting.","authors":"Siyang Qin, Roberto Manduchi","doi":"10.1109/ICDAR.2017.210","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an algorithm for word-level text spotting that is able to accurately and reliably determine the bounding regions of individual words of text \"in the wild\". Our system is formed by the cascade of two convolutional neural networks. The first network is fully convolutional and is in charge of detecting areas containing text. This results in a very reliable but possibly inaccurate segmentation of the input image. The second network (inspired by the popular YOLO architecture) analyzes each segment produced in the first stage, and predicts oriented rectangular regions containing individual words. No post-processing (e.g. text line grouping) is necessary. With execution time of 450 ms for a 1000 × 560 image on a Titan X GPU, our system achieves good performance on the ICDAR 2013, 2015 benchmarks [2], [1].</p>","PeriodicalId":90689,"journal":{"name":"Proceedings of the ... International Conference on Document Analysis and Recognition. International Conference on Document Analysis and Recognition","volume":"2017 ","pages":"1275-1282"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858575/pdf/nihms904003.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Document Analysis and Recognition. International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an algorithm for word-level text spotting that is able to accurately and reliably determine the bounding regions of individual words of text "in the wild". Our system is formed by the cascade of two convolutional neural networks. The first network is fully convolutional and is in charge of detecting areas containing text. This results in a very reliable but possibly inaccurate segmentation of the input image. The second network (inspired by the popular YOLO architecture) analyzes each segment produced in the first stage, and predicts oriented rectangular regions containing individual words. No post-processing (e.g. text line grouping) is necessary. With execution time of 450 ms for a 1000 × 560 image on a Titan X GPU, our system achieves good performance on the ICDAR 2013, 2015 benchmarks [2], [1].

Abstract Image

Abstract Image

Abstract Image

用于单词级文本定位的级联分割检测网络
我们介绍了一种用于单词级文本识别的算法,它能够准确可靠地确定 "野生 "文本中单个单词的边界区域。我们的系统由两个卷积神经网络级联而成。第一个网络是完全卷积网络,负责检测包含文本的区域。这样就能对输入图像进行非常可靠但可能不准确的分割。第二个网络(受流行的 YOLO 架构启发)分析第一阶段生成的每个片段,并预测包含单个单词的定向矩形区域。无需进行后处理(如文本行分组)。我们的系统在 Titan X GPU 上处理 1000 × 560 图像的执行时间为 450 毫秒,在 ICDAR 2013 和 2015 基准测试中取得了良好的性能[2], [1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信