Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data.

Ying Liu, Brent Logan, Ning Liu, Zhiyuan Xu, Jian Tang, Yanzhi Wang
{"title":"Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data.","authors":"Ying Liu,&nbsp;Brent Logan,&nbsp;Ning Liu,&nbsp;Zhiyuan Xu,&nbsp;Jian Tang,&nbsp;Yanzhi Wang","doi":"10.1109/ICHI.2017.45","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose the first deep reinforcement learning framework to estimate the optimal Dynamic Treatment Regimes from observational medical data. This framework is more flexible and adaptive for high dimensional action and state spaces than existing reinforcement learning methods to model real life complexity in heterogeneous disease progression and treatment choices, with the goal to provide doctor and patients the data-driven personalized decision recommendations. The proposed deep reinforcement learning framework contains a supervised learning step to predict the most possible expert actions; and a deep reinforcement learning step to estimate the long term value function of Dynamic Treatment Regimes. We motivated and implemented the proposed framework on a data set from the Center for International Bone Marrow Transplant Research (CIBMTR) registry database, focusing on the sequence of prevention and treatments for acute and chronic graft versus host disease. We showed results of the initial implementation that demonstrates promising accuracy in predicting human expert decisions and initial implementation for the reinforcement learning step.</p>","PeriodicalId":79623,"journal":{"name":"Healthcare informatics : the business magazine for information and communication systems","volume":"2017 ","pages":"380-385"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICHI.2017.45","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare informatics : the business magazine for information and communication systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

In this paper, we propose the first deep reinforcement learning framework to estimate the optimal Dynamic Treatment Regimes from observational medical data. This framework is more flexible and adaptive for high dimensional action and state spaces than existing reinforcement learning methods to model real life complexity in heterogeneous disease progression and treatment choices, with the goal to provide doctor and patients the data-driven personalized decision recommendations. The proposed deep reinforcement learning framework contains a supervised learning step to predict the most possible expert actions; and a deep reinforcement learning step to estimate the long term value function of Dynamic Treatment Regimes. We motivated and implemented the proposed framework on a data set from the Center for International Bone Marrow Transplant Research (CIBMTR) registry database, focusing on the sequence of prevention and treatments for acute and chronic graft versus host disease. We showed results of the initial implementation that demonstrates promising accuracy in predicting human expert decisions and initial implementation for the reinforcement learning step.

Abstract Image

Abstract Image

Abstract Image

基于医疗注册数据的动态治疗方案的深度强化学习。
在本文中,我们提出了第一个深度强化学习框架,用于从观察性医疗数据中估计最优动态治疗方案。与现有的强化学习方法相比,该框架对高维动作和状态空间更具灵活性和适应性,可以模拟异构疾病进展和治疗选择中的现实生活复杂性,目标是为医生和患者提供数据驱动的个性化决策建议。提出的深度强化学习框架包含一个监督学习步骤来预测最可能的专家行为;以及一个深度强化学习步骤来估计动态治疗方案的长期价值函数。我们在国际骨髓移植研究中心(CIBMTR)注册数据库的数据集上启动并实施了拟议的框架,重点关注急性和慢性移植物抗宿主病的预防和治疗顺序。我们展示了初步实现的结果,证明了在预测人类专家决策和强化学习步骤的初步实现方面有希望的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信