Wrapping Glial Morphogenesis and Signaling Control the Timing and Pattern of Neuronal Differentiation in the Drosophila Lamina.

Journal of Experimental Neuroscience Pub Date : 2018-03-04 eCollection Date: 2018-01-01 DOI:10.1177/1179069518759294
Anthony M Rossi, Vilaiwan M Fernandes
{"title":"Wrapping Glial Morphogenesis and Signaling Control the Timing and Pattern of Neuronal Differentiation in the <i>Drosophila</i> Lamina.","authors":"Anthony M Rossi,&nbsp;Vilaiwan M Fernandes","doi":"10.1177/1179069518759294","DOIUrl":null,"url":null,"abstract":"<p><p>Various regions of the developing brain coordinate their construction so that the correct types and numbers of cells are generated to build a functional network. We previously discovered that wrapping glia in the <i>Drosophila</i> visual system are essential for coordinating retinal and lamina development. We showed that wrapping glia, which ensheath photoreceptor axons, respond to an epidermal growth factor cue from photoreceptors by secreting insulins. Wrapping glial insulins activate the mitogen-activated protein kinase (MAPK) pathway downstream of insulin receptor in lamina precursors to induce neuronal differentiation. The signaling relay via wrapping glia introduces a delay that allows the lamina to assemble the correct stoichiometry and physical alignment of precursors before differentiating and imposes a stereotyped spatiotemporal pattern that is relevant for specifying the individual lamina neuron fates. Here, we further describe how wrapping glia morphogenesis correlates with the timing of lamina neuron differentiation by 2-photon live imaging. We also show that although MAPK activity in lamina precursors drives neuronal differentiation, the upstream receptor driving MAPK activation in lamina precursors and the ligand secreted by wrapping glia to trigger it differentially affect lamina neuron differentiation. These results highlight differences in MAPK signaling properties and confirm that communication between photoreceptors, wrapping glia, and lamina precursors must be precisely controlled to build a complex neural network.</p>","PeriodicalId":15817,"journal":{"name":"Journal of Experimental Neuroscience","volume":"12 ","pages":"1179069518759294"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179069518759294","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1179069518759294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Various regions of the developing brain coordinate their construction so that the correct types and numbers of cells are generated to build a functional network. We previously discovered that wrapping glia in the Drosophila visual system are essential for coordinating retinal and lamina development. We showed that wrapping glia, which ensheath photoreceptor axons, respond to an epidermal growth factor cue from photoreceptors by secreting insulins. Wrapping glial insulins activate the mitogen-activated protein kinase (MAPK) pathway downstream of insulin receptor in lamina precursors to induce neuronal differentiation. The signaling relay via wrapping glia introduces a delay that allows the lamina to assemble the correct stoichiometry and physical alignment of precursors before differentiating and imposes a stereotyped spatiotemporal pattern that is relevant for specifying the individual lamina neuron fates. Here, we further describe how wrapping glia morphogenesis correlates with the timing of lamina neuron differentiation by 2-photon live imaging. We also show that although MAPK activity in lamina precursors drives neuronal differentiation, the upstream receptor driving MAPK activation in lamina precursors and the ligand secreted by wrapping glia to trigger it differentially affect lamina neuron differentiation. These results highlight differences in MAPK signaling properties and confirm that communication between photoreceptors, wrapping glia, and lamina precursors must be precisely controlled to build a complex neural network.

Abstract Image

Abstract Image

Abstract Image

包裹性胶质细胞的形态发生和信号传导控制果蝇皮层神经元分化的时间和模式。
发育中的大脑的不同区域协调它们的结构,从而产生正确类型和数量的细胞来构建一个功能网络。我们之前发现,包裹胶质细胞在果蝇视觉系统中是协调视网膜和层发育的必要条件。我们发现包裹性胶质细胞,包裹着光感受器轴突,通过分泌胰岛素响应来自光感受器的表皮生长因子。包裹性胶质胰岛素激活层状前体胰岛素受体下游的丝裂原活化蛋白激酶(MAPK)通路,诱导神经元分化。通过包裹胶质细胞的信号传递引入了一种延迟,允许层在分化之前组装正确的化学计量和前体的物理排列,并施加了与指定单个层状神经元命运相关的刻板时空模式。在这里,我们通过双光子实时成像进一步描述了包裹性胶质细胞的形态发生如何与层状神经元分化的时间相关。我们还表明,尽管层状前体的MAPK活性驱动神经元分化,但驱动层状前体MAPK激活的上游受体和包裹胶质细胞分泌的触发它的配体对层状神经元分化的影响是不同的。这些结果突出了MAPK信号特性的差异,并证实了光感受器、包裹胶质细胞和层状前体之间的通信必须精确控制,以建立一个复杂的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信