Maroof M. Adil, David V. Schaffer
下载PDF
{"title":"hPSC-derived Midbrain Dopaminergic Neurons Generated in a Scalable 3-D Biomaterial","authors":"Maroof M. Adil, David V. Schaffer","doi":"10.1002/cpsc.47","DOIUrl":null,"url":null,"abstract":"<p>Human pluripotent stem cell (hPSC)–derived midbrain dopaminergic (mDA) neurons may facilitate the development of therapies for Parkinson's disease via disease modeling, drug screening, and cell replacement therapy. However, large numbers of cells are typically needed for these applications, and 2-D culture–based approaches typically used for mDA differentiation are difficult to scale up and require a long time for mDA maturation. Here we present a protocol to rapidly generate functional mDA neurons in a fully defined, scalable, thermoresponsive 3-D biomaterial. Resource-efficient and accelerated differentiation of large numbers of mDA neurons may thus facilitate studying and treating PD. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.47","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4
引用
批量引用
Abstract
Human pluripotent stem cell (hPSC)–derived midbrain dopaminergic (mDA) neurons may facilitate the development of therapies for Parkinson's disease via disease modeling, drug screening, and cell replacement therapy. However, large numbers of cells are typically needed for these applications, and 2-D culture–based approaches typically used for mDA differentiation are difficult to scale up and require a long time for mDA maturation. Here we present a protocol to rapidly generate functional mDA neurons in a fully defined, scalable, thermoresponsive 3-D biomaterial. Resource-efficient and accelerated differentiation of large numbers of mDA neurons may thus facilitate studying and treating PD. © 2018 by John Wiley & Sons, Inc.
在可扩展的三维生物材料中生成hpsc衍生的中脑多巴胺能神经元
人类多能干细胞(hPSC)衍生的中脑多巴胺能(mDA)神经元可能通过疾病建模、药物筛选和细胞替代疗法促进帕金森病治疗的发展。然而,这些应用通常需要大量的细胞,并且通常用于mDA分化的基于二维培养的方法难以扩大规模,并且需要很长时间才能使mDA成熟。在这里,我们提出了一种方案,快速生成功能mDA神经元在一个完全定义的,可扩展的,热响应的三维生物材料。大量mDA神经元的资源高效和加速分化可能有助于PD的研究和治疗。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。