Marta-Marina Pérez-Alonso, Víctor Carrasco-Loba, Joaquín Medina, Jesús Vicente-Carbajosa, Stephan Pollmann
{"title":"When Transcriptomics and Metabolomics Work Hand in Hand: A Case Study Characterizing Plant CDF Transcription Factors.","authors":"Marta-Marina Pérez-Alonso, Víctor Carrasco-Loba, Joaquín Medina, Jesús Vicente-Carbajosa, Stephan Pollmann","doi":"10.3390/ht7010007","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last three decades, novel \"omics\" platform technologies for the sequencing of DNA and complementary DNA (cDNA) (RNA-Seq), as well as for the analysis of proteins and metabolites by mass spectrometry, have become more and more available and increasingly found their way into general laboratory life. With this, the ability to generate highly multivariate datasets on the biological systems of choice has increased tremendously. However, the processing and, perhaps even more importantly, the integration of \"omics\" datasets still remains a bottleneck, although considerable computational and algorithmic advances have been made in recent years. In this mini-review, we use a number of recent \"multi-omics\" approaches realized in our laboratories as a common theme to discuss possible pitfalls of applying \"omics\" approaches and to highlight some useful tools for data integration and visualization in the form of an exemplified case study. In the selected example, we used a combination of transcriptomics and metabolomics alongside phenotypic analyses to functionally characterize a small number of Cycling Dof Transcription Factors (CDFs). It has to be remarked that, even though this approach is broadly used, the given workflow is only one of plenty possible ways to characterize target proteins.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7010007","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Throughput","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ht7010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4
Abstract
Over the last three decades, novel "omics" platform technologies for the sequencing of DNA and complementary DNA (cDNA) (RNA-Seq), as well as for the analysis of proteins and metabolites by mass spectrometry, have become more and more available and increasingly found their way into general laboratory life. With this, the ability to generate highly multivariate datasets on the biological systems of choice has increased tremendously. However, the processing and, perhaps even more importantly, the integration of "omics" datasets still remains a bottleneck, although considerable computational and algorithmic advances have been made in recent years. In this mini-review, we use a number of recent "multi-omics" approaches realized in our laboratories as a common theme to discuss possible pitfalls of applying "omics" approaches and to highlight some useful tools for data integration and visualization in the form of an exemplified case study. In the selected example, we used a combination of transcriptomics and metabolomics alongside phenotypic analyses to functionally characterize a small number of Cycling Dof Transcription Factors (CDFs). It has to be remarked that, even though this approach is broadly used, the given workflow is only one of plenty possible ways to characterize target proteins.
High-ThroughputBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍:
High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: -Microarrays -DNA Sequencing -RNA Sequencing -Protein Identification and Quantification -Cell-based Approaches -Omics Technologies -Imaging -Bioinformatics -Computational Biology/Chemistry -Statistics -Integrative Omics -Drug Discovery and Development -Microfluidics -Lab-on-a-chip -Data Mining -Databases -Multiplex Assays