{"title":"Tests for comparison of multiple endpoints with application to omics data.","authors":"Marco Marozzi","doi":"10.1515/sagmb-2017-0033","DOIUrl":null,"url":null,"abstract":"<p><p>In biomedical research, multiple endpoints are commonly analyzed in \"omics\" fields like genomics, proteomics and metabolomics. Traditional methods designed for low-dimensional data either perform poorly or are not applicable when analyzing high-dimensional data whose dimension is generally similar to, or even much larger than, the number of subjects. The complex biochemical interplay between hundreds (or thousands) of endpoints is reflected by complex dependence relations. The aim of the paper is to propose tests that are very suitable for analyzing omics data because they do not require the normality assumption, are powerful also for small sample sizes, in the presence of complex dependence relations among endpoints, and when the number of endpoints is much larger than the number of subjects. Unbiasedness and consistency of the tests are proved and their size and power are assessed numerically. It is shown that the proposed approach based on the nonparametric combination of dependent interpoint distance tests is very effective. Applications to genomics and metabolomics are discussed.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2017-0033","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2017-0033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
In biomedical research, multiple endpoints are commonly analyzed in "omics" fields like genomics, proteomics and metabolomics. Traditional methods designed for low-dimensional data either perform poorly or are not applicable when analyzing high-dimensional data whose dimension is generally similar to, or even much larger than, the number of subjects. The complex biochemical interplay between hundreds (or thousands) of endpoints is reflected by complex dependence relations. The aim of the paper is to propose tests that are very suitable for analyzing omics data because they do not require the normality assumption, are powerful also for small sample sizes, in the presence of complex dependence relations among endpoints, and when the number of endpoints is much larger than the number of subjects. Unbiasedness and consistency of the tests are proved and their size and power are assessed numerically. It is shown that the proposed approach based on the nonparametric combination of dependent interpoint distance tests is very effective. Applications to genomics and metabolomics are discussed.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.