Bioinformatic Analysis of Coronary Disease Associated SNPs and Genes to Identify Proteins Potentially Involved in the Pathogenesis of Atherosclerosis.

Chunhong Mao, Timothy D Howard, Dan Sullivan, Zongming Fu, Guoqiang Yu, Sarah J Parker, Rebecca Will, Richard S Vander Heide, Yue Wang, James Hixson, Jennifer Van Eyk, David M Herrington
{"title":"Bioinformatic Analysis of Coronary Disease Associated SNPs and Genes to Identify Proteins Potentially Involved in the Pathogenesis of Atherosclerosis.","authors":"Chunhong Mao,&nbsp;Timothy D Howard,&nbsp;Dan Sullivan,&nbsp;Zongming Fu,&nbsp;Guoqiang Yu,&nbsp;Sarah J Parker,&nbsp;Rebecca Will,&nbsp;Richard S Vander Heide,&nbsp;Yue Wang,&nbsp;James Hixson,&nbsp;Jennifer Van Eyk,&nbsp;David M Herrington","doi":"10.14302/issn.2326-0793.jpgr-17-1447","DOIUrl":null,"url":null,"abstract":"<p><p>Factors that contribute to the onset of atherosclerosis may be elucidated by bioinformatic techniques applied to multiple sources of genomic and proteomic data. The results of genome wide association studies, such as the CardioGramPlusC4D study, expression data, such as that available from expression quantitative trait loci (eQTL) databases, along with protein interaction and pathway data available in Ingenuity Pathway Analysis (IPA), constitute a substantial set of data amenable to bioinformatics analysis. This study used bioinformatic analyses of recent genome wide association data to identify a seed set of genes likely associated with atherosclerosis. The set was expanded to include protein interaction candidates to create a network of proteins possibly influencing the onset and progression of atherosclerosis. Local average connectivity (LAC), eigenvector centrality, and betweenness metrics were calculated for the interaction network to identify top gene and protein candidates for a better understanding of the atherosclerotic disease process. The top ranking genes included some known to be involved with cardiovascular disease (<i>APOA1, APOA5, APOB, APOC1, APOC2, APOE, CDKN1A, CXCL12, SCARB1, SMARCA4</i> and <i>TERT</i>), and others that are less obvious and require further investigation (<i>TP53, MYC, PPARG, YWHAQ, RB1, AR, ESR1, EGFR, UBC</i> and <i>YWHAZ</i>). Collectively these data help define a more focused set of genes that likely play a pivotal role in the pathogenesis of atherosclerosis and are therefore natural targets for novel therapeutic interventions.</p>","PeriodicalId":90235,"journal":{"name":"Journal of proteomics and genomics research","volume":"2 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14302/issn.2326-0793.jpgr-17-1447","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics and genomics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14302/issn.2326-0793.jpgr-17-1447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Factors that contribute to the onset of atherosclerosis may be elucidated by bioinformatic techniques applied to multiple sources of genomic and proteomic data. The results of genome wide association studies, such as the CardioGramPlusC4D study, expression data, such as that available from expression quantitative trait loci (eQTL) databases, along with protein interaction and pathway data available in Ingenuity Pathway Analysis (IPA), constitute a substantial set of data amenable to bioinformatics analysis. This study used bioinformatic analyses of recent genome wide association data to identify a seed set of genes likely associated with atherosclerosis. The set was expanded to include protein interaction candidates to create a network of proteins possibly influencing the onset and progression of atherosclerosis. Local average connectivity (LAC), eigenvector centrality, and betweenness metrics were calculated for the interaction network to identify top gene and protein candidates for a better understanding of the atherosclerotic disease process. The top ranking genes included some known to be involved with cardiovascular disease (APOA1, APOA5, APOB, APOC1, APOC2, APOE, CDKN1A, CXCL12, SCARB1, SMARCA4 and TERT), and others that are less obvious and require further investigation (TP53, MYC, PPARG, YWHAQ, RB1, AR, ESR1, EGFR, UBC and YWHAZ). Collectively these data help define a more focused set of genes that likely play a pivotal role in the pathogenesis of atherosclerosis and are therefore natural targets for novel therapeutic interventions.

Abstract Image

冠状动脉疾病相关snp和基因的生物信息学分析,以确定可能参与动脉粥样硬化发病机制的蛋白质。
生物信息学技术应用于多种基因组和蛋白质组学数据来源,可以阐明导致动脉粥样硬化发生的因素。全基因组关联研究的结果,如CardioGramPlusC4D研究,表达数据,如表达数量性状位点(eQTL)数据库,以及独创性途径分析(IPA)中可用的蛋白质相互作用和途径数据,构成了一套可用于生物信息学分析的大量数据。本研究利用生物信息学分析了最近的基因组广泛关联数据,以确定可能与动脉粥样硬化相关的一组种子基因。该集合被扩展到包括蛋白质相互作用候选物,以创建一个可能影响动脉粥样硬化发生和进展的蛋白质网络。计算了相互作用网络的局部平均连通性(LAC)、特征向量中心性和中间度指标,以确定最佳基因和候选蛋白,从而更好地了解动脉粥样硬化疾病过程。排名前几位的基因包括一些已知与心血管疾病有关的基因(APOA1、APOA5、APOB、APOC1、APOC2、APOE、CDKN1A、CXCL12、SCARB1、SMARCA4和TERT),以及其他不太明显且需要进一步研究的基因(TP53、MYC、PPARG、YWHAQ、RB1、AR、ESR1、EGFR、UBC和YWHAZ)。总的来说,这些数据有助于确定一组更集中的基因,这些基因可能在动脉粥样硬化的发病机制中起关键作用,因此是新型治疗干预的天然靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信