V S Mukhanovi, O A Rylkova, T Ya Churiloval, E G Sakhon, N V Pimenov
{"title":"Structure and Seasonal Trophodynamics of Picophytoplankton in Sevastopol Bay and Adjacent Waters (the Black Sea).","authors":"V S Mukhanovi, O A Rylkova, T Ya Churiloval, E G Sakhon, N V Pimenov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Abundance and seasonal trophodynamics. (specific growth rate, daily production, and grazing mortality) of the major picophytoplankton components, Synechococcus cyanobacteria (Syn) and picoeukary- otes (Pico-E), were studied at three stations in Sevastopol Bay and adjacent coastal waters (the Black Sea) in 2014 by flow cytometry and the dilution method. Pico- E abundance was shown to increase along the nutrient and pollution gradient from the coastal waters outside the bay (annual average of 7.3 ± 5.4 x 103 cells mL⁻¹) to the eastern corner of the bay (28.7 ± 11.4 x 103 cells mL⁻¹), while no relation was found between the water pollution status.and Syn abundance (9.9 ± 8.7 x 10³ cells mL⁻¹, at all the stations, n=27). Matter flows through the communities (daily production for Syn and Pico-E 0-16.6 and 0-19.3 μg C L- day⁻¹, respec- tively; grazing mortality for Syn and PicoE 0-3.6 and 0-21.2 μg C L⁻¹ day⁻¹, respectively) were comparable to or even exceeded their biomass stocks (<0.05-6.8 and 0.9-26.5 μg C L- for Syn and PicoE, respectively), indicating high biomass turnover rates. The highest flow-to-stock ratio (up to 6 for Syn) and,a significant imbalance between daily production (P) and grazing mortality (G) were observed in the most polluted and eu- trophicated waters of the bay in spring (Pico-E: P/G <.1) and late summer (Syn: P/G > 1). Black River inflow to the bay was hypothesized to be among the mechanisms maintaining.this pronounced and long-term im- balance in the open system without any negative consequences for the picophytoplankton assemlages.</p>","PeriodicalId":18732,"journal":{"name":"Mikrobiologiia","volume":"85 5","pages":"512-521"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abundance and seasonal trophodynamics. (specific growth rate, daily production, and grazing mortality) of the major picophytoplankton components, Synechococcus cyanobacteria (Syn) and picoeukary- otes (Pico-E), were studied at three stations in Sevastopol Bay and adjacent coastal waters (the Black Sea) in 2014 by flow cytometry and the dilution method. Pico- E abundance was shown to increase along the nutrient and pollution gradient from the coastal waters outside the bay (annual average of 7.3 ± 5.4 x 103 cells mL⁻¹) to the eastern corner of the bay (28.7 ± 11.4 x 103 cells mL⁻¹), while no relation was found between the water pollution status.and Syn abundance (9.9 ± 8.7 x 10³ cells mL⁻¹, at all the stations, n=27). Matter flows through the communities (daily production for Syn and Pico-E 0-16.6 and 0-19.3 μg C L- day⁻¹, respec- tively; grazing mortality for Syn and PicoE 0-3.6 and 0-21.2 μg C L⁻¹ day⁻¹, respectively) were comparable to or even exceeded their biomass stocks (<0.05-6.8 and 0.9-26.5 μg C L- for Syn and PicoE, respectively), indicating high biomass turnover rates. The highest flow-to-stock ratio (up to 6 for Syn) and,a significant imbalance between daily production (P) and grazing mortality (G) were observed in the most polluted and eu- trophicated waters of the bay in spring (Pico-E: P/G <.1) and late summer (Syn: P/G > 1). Black River inflow to the bay was hypothesized to be among the mechanisms maintaining.this pronounced and long-term im- balance in the open system without any negative consequences for the picophytoplankton assemlages.