Akmal Artikov, Aleksandr Dorodnykh, Yana Kashinskaya, Egor Samosvat
{"title":"Factorization threshold models for scale-free networks generation.","authors":"Akmal Artikov, Aleksandr Dorodnykh, Yana Kashinskaya, Egor Samosvat","doi":"10.1186/s40649-016-0029-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several models for producing scale-free networks have been suggested; most of them are based on the preferential attachment approach. In this article, we suggest a new approach for generating scale-free networks with an alternative source of the power-law degree distribution.</p><p><strong>Methods: </strong>The model derives from matrix factorization methods and geographical threshold models that were recently proven to show good results in generating scale-free networks. We associate each node with a vector having latent features distributed over a unit sphere and with a weight variable sampled from a Pareto distribution. We join two nodes by an edge if they are spatially close and/or have large weights.</p><p><strong>Results and conclusion: </strong>The network produced by this approach is scale free and has a power-law degree distribution with an exponent of 2. In addition, we propose an extension of the model that allows us to generate directed networks with tunable power-law exponents.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"3 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40649-016-0029-8","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-016-0029-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Background: Several models for producing scale-free networks have been suggested; most of them are based on the preferential attachment approach. In this article, we suggest a new approach for generating scale-free networks with an alternative source of the power-law degree distribution.
Methods: The model derives from matrix factorization methods and geographical threshold models that were recently proven to show good results in generating scale-free networks. We associate each node with a vector having latent features distributed over a unit sphere and with a weight variable sampled from a Pareto distribution. We join two nodes by an edge if they are spatially close and/or have large weights.
Results and conclusion: The network produced by this approach is scale free and has a power-law degree distribution with an exponent of 2. In addition, we propose an extension of the model that allows us to generate directed networks with tunable power-law exponents.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.