{"title":"Optimization problems in correlated networks.","authors":"Song Yang, Stojan Trajanovski, Fernando A Kuipers","doi":"10.1186/s40649-016-0026-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Solving the shortest path and min-cut problems are key in achieving high-performance and robust communication networks. Those problems have often been studied in deterministic and uncorrelated networks both in their original formulations as well as in several constrained variants. However, in real-world networks, link weights (e.g., delay, bandwidth, failure probability) are often correlated due to spatial or temporal reasons, and these correlated link weights together behave in a different manner and are not always additive, as commonly assumed.</p><p><strong>Methods: </strong>In this paper, we first propose two correlated link weight models, namely (1) the deterministic correlated model and (2) the (log-concave) stochastic correlated model. Subsequently, we study the shortest path problem and the min-cut problem under these two correlated models.</p><p><strong>Results and conclusions: </strong>We prove that these two problems are NP-hard under the deterministic correlated model, and even cannot be approximated to arbitrary degree in polynomial time. However, these two problems are solvable in polynomial time under the (constrained) nodal deterministic correlated model, and can be solved by convex optimization under the (log-concave) stochastic correlated model.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"3 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40649-016-0026-y","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-016-0026-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
Abstract
Background: Solving the shortest path and min-cut problems are key in achieving high-performance and robust communication networks. Those problems have often been studied in deterministic and uncorrelated networks both in their original formulations as well as in several constrained variants. However, in real-world networks, link weights (e.g., delay, bandwidth, failure probability) are often correlated due to spatial or temporal reasons, and these correlated link weights together behave in a different manner and are not always additive, as commonly assumed.
Methods: In this paper, we first propose two correlated link weight models, namely (1) the deterministic correlated model and (2) the (log-concave) stochastic correlated model. Subsequently, we study the shortest path problem and the min-cut problem under these two correlated models.
Results and conclusions: We prove that these two problems are NP-hard under the deterministic correlated model, and even cannot be approximated to arbitrary degree in polynomial time. However, these two problems are solvable in polynomial time under the (constrained) nodal deterministic correlated model, and can be solved by convex optimization under the (log-concave) stochastic correlated model.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.