Zahida Yesmin Roly, Brendan Backhouse, Andrew Cutting, Tiong Yang Tan, Andrew H Sinclair, Katie L Ayers, Andrew T Major, Craig A Smith
{"title":"The cell biology and molecular genetics of Müllerian duct development.","authors":"Zahida Yesmin Roly, Brendan Backhouse, Andrew Cutting, Tiong Yang Tan, Andrew H Sinclair, Katie L Ayers, Andrew T Major, Craig A Smith","doi":"10.1002/wdev.310","DOIUrl":null,"url":null,"abstract":"<p><p>The Müllerian ducts are part of the embryonic urogenital system. They give rise to mature structures that serve a critical function in the transport and development of the oocyte and/or embryo. In most vertebrates, both sexes initially develop Müllerian ducts during embryogenesis, but they regress in males under the influence of testis-derived Anti-Müllerian Hormone (AMH). A number of regulatory factors have been shown to be essential for proper duct development, including Bmp and Wnt signaling molecules, together with homeodomain transcription factors such as PAX2 and LIM1. Later in development, the fate of the ducts diverges between males and females and is regulated by AMH and Wnt signaling molecules (duct regression in males) and Hox genes (duct patterning in females). Most of the genes and molecular pathways known to be involved in Müllerian duct development have been elucidated through animal models, namely, the mouse and chicken. In addition, genetic analysis of humans with reproductive tract disorders has further defined molecular mechanisms of duct formation and differentiation. However, despite our current understanding of Müllerian duct development, some questions remain to be answered at the molecular genetic level. This article is categorized under: Early Embryonic Development > Development to the Basic Body Plan.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"7 3","pages":"e310"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.310","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 51
Abstract
The Müllerian ducts are part of the embryonic urogenital system. They give rise to mature structures that serve a critical function in the transport and development of the oocyte and/or embryo. In most vertebrates, both sexes initially develop Müllerian ducts during embryogenesis, but they regress in males under the influence of testis-derived Anti-Müllerian Hormone (AMH). A number of regulatory factors have been shown to be essential for proper duct development, including Bmp and Wnt signaling molecules, together with homeodomain transcription factors such as PAX2 and LIM1. Later in development, the fate of the ducts diverges between males and females and is regulated by AMH and Wnt signaling molecules (duct regression in males) and Hox genes (duct patterning in females). Most of the genes and molecular pathways known to be involved in Müllerian duct development have been elucidated through animal models, namely, the mouse and chicken. In addition, genetic analysis of humans with reproductive tract disorders has further defined molecular mechanisms of duct formation and differentiation. However, despite our current understanding of Müllerian duct development, some questions remain to be answered at the molecular genetic level. This article is categorized under: Early Embryonic Development > Development to the Basic Body Plan.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.