Order preservation of expected information content using Unscented Transform approximation of multivariate prior distributions in HIV 2-LTR experiment design.

George Abraham, Aditya Jagarapu, Lamont Cannon, Ryan Zurakowski
{"title":"Order preservation of expected information content using Unscented Transform approximation of multivariate prior distributions in HIV 2-LTR experiment design.","authors":"George Abraham, Aditya Jagarapu, Lamont Cannon, Ryan Zurakowski","doi":"10.1109/CDC.2016.7799129","DOIUrl":null,"url":null,"abstract":"<p><p>Numerical computation of the expected information content of a prospective experimental design is computationally expensive, requiring calculating the Kullback-Leibler divergence of the posterior distribution from the prior for simulated data from a large sample of points from the prior distribution. In this work, we investigate whether the Unscented Transform (UT) of the prior distribution can provide an adequate estimate of the expected information content in the context of experiment design for a previously validated HIV-1 2-LTR model. Three different schedules with evenly distributed time points have been used to generate the experimental data along with the incorporation of qPCR noise for the study. The UT shows promise in estimating information content by preserving the optimal ordering of 2-LTR sample collection schedules, when compared to completely stochastic sampling from the underlying multivariate distributions.</p>","PeriodicalId":74517,"journal":{"name":"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control","volume":"2016 ","pages":"5597-5602"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CDC.2016.7799129","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2016.7799129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Numerical computation of the expected information content of a prospective experimental design is computationally expensive, requiring calculating the Kullback-Leibler divergence of the posterior distribution from the prior for simulated data from a large sample of points from the prior distribution. In this work, we investigate whether the Unscented Transform (UT) of the prior distribution can provide an adequate estimate of the expected information content in the context of experiment design for a previously validated HIV-1 2-LTR model. Three different schedules with evenly distributed time points have been used to generate the experimental data along with the incorporation of qPCR noise for the study. The UT shows promise in estimating information content by preserving the optimal ordering of 2-LTR sample collection schedules, when compared to completely stochastic sampling from the underlying multivariate distributions.

Abstract Image

Abstract Image

Abstract Image

HIV 2-LTR实验设计中基于多元先验分布的Unscented变换近似期望信息内容的顺序保持。
对前瞻性实验设计的预期信息含量进行数值计算是非常昂贵的,需要对来自先验分布的大样本点的模拟数据计算后验分布与先验分布的Kullback-Leibler散度。在这项工作中,我们研究了先验分布的Unscented变换(UT)是否可以在先前验证的HIV-1 2-LTR模型的实验设计背景下提供对预期信息内容的充分估计。本研究采用了三种时间点均匀分布的时间序列来生成实验数据,同时加入了qPCR噪声。与来自底层多变量分布的完全随机抽样相比,UT通过保持2-LTR样本收集时间表的最佳顺序来估计信息内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信