Numerical approximation of the observed information matrix with Oakes' identity.

R Philip Chalmers
{"title":"Numerical approximation of the observed information matrix with Oakes' identity.","authors":"R Philip Chalmers","doi":"10.1111/bmsp.12127","DOIUrl":null,"url":null,"abstract":"<p><p>An efficient and accurate numerical approximation methodology useful for obtaining the observed information matrix and subsequent asymptotic covariance matrix when fitting models with the EM algorithm is presented. The numerical approximation approach is compared to existing algorithms intended for the same purpose, and the computational benefits and accuracy of this new approach are highlighted. Instructive and real-world examples are included to demonstrate the methodology concretely, properties of the estimator are discussed in detail, and a Monte Carlo simulation study is included to investigate the behaviour of a multi-parameter item response theory model using three competing finite-difference algorithms.</p>","PeriodicalId":272649,"journal":{"name":"The British journal of mathematical and statistical psychology","volume":"71 3","pages":"415-436"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12127","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of mathematical and statistical psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

An efficient and accurate numerical approximation methodology useful for obtaining the observed information matrix and subsequent asymptotic covariance matrix when fitting models with the EM algorithm is presented. The numerical approximation approach is compared to existing algorithms intended for the same purpose, and the computational benefits and accuracy of this new approach are highlighted. Instructive and real-world examples are included to demonstrate the methodology concretely, properties of the estimator are discussed in detail, and a Monte Carlo simulation study is included to investigate the behaviour of a multi-parameter item response theory model using three competing finite-difference algorithms.

用奥克斯恒等式对观测到的信息矩阵进行数值逼近。
提出了一种高效、准确的数值逼近方法,可用于在用EM算法拟合模型时获得观测到的信息矩阵和随后的渐近协方差矩阵。将数值逼近方法与现有算法进行了比较,并强调了这种新方法的计算效益和准确性。本文包括了一些有指导意义的和现实世界的例子来具体地演示该方法,详细讨论了估计器的性质,并包括蒙特卡罗模拟研究,以研究使用三种竞争有限差分算法的多参数项目反应理论模型的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信