Simone Ciuffi, Roberto Zonefrati, Maria Luisa Brandi
{"title":"Adipose stem cells for bone tissue repair.","authors":"Simone Ciuffi, Roberto Zonefrati, Maria Luisa Brandi","doi":"10.11138/ccmbm/2017.14.1.217","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlike the BMSCs, ASCs can be easily harvested in large amounts with minimal invasive procedures. The combination of these properties suggests that these cells may be a useful tool in tissue engineering and regenerative medicine.</p>","PeriodicalId":47230,"journal":{"name":"Clinical Cases in Mineral and Bone Metabolism","volume":"14 2","pages":"217-226"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726213/pdf/217-226.pdf","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Cases in Mineral and Bone Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11138/ccmbm/2017.14.1.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 51
Abstract
Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlike the BMSCs, ASCs can be easily harvested in large amounts with minimal invasive procedures. The combination of these properties suggests that these cells may be a useful tool in tissue engineering and regenerative medicine.
期刊介绍:
The Journal encourages the submission of case reports and clinical vignettes that provide new and exciting insights into the pathophysiology and characteristics of disorders related to skeletal function and mineral metabolism and/or highlight pratical diagnostic and /or therapeutic considerations.