Tissue Thickness Effects on Immunohistochemical Staining Intensity of Markers of Cancer.

Adrienne S McCampbell, Varun Raghunathan, May Tom-Moy, Richard K Workman, Rick Haven, Amir Ben-Dor, Ole F Rasmussen, Lars Jacobsen, Martin Lindberg, N Alice Yamada, Carol Schembri
{"title":"Tissue Thickness Effects on Immunohistochemical Staining Intensity of Markers of Cancer.","authors":"Adrienne S McCampbell,&nbsp;Varun Raghunathan,&nbsp;May Tom-Moy,&nbsp;Richard K Workman,&nbsp;Rick Haven,&nbsp;Amir Ben-Dor,&nbsp;Ole F Rasmussen,&nbsp;Lars Jacobsen,&nbsp;Martin Lindberg,&nbsp;N Alice Yamada,&nbsp;Carol Schembri","doi":"10.1097/PAI.0000000000000593","DOIUrl":null,"url":null,"abstract":"<p><p>High-quality patient samples are required for reliable immunohistochemistry test outcomes that provide a significant benefit for patient care. Among the preanalytic variables in tissue handling, tissue thickness is thought to be easily controlled; however, whether the thickness of the tissue effects the staining intensity for antibody immunohistochemistry has not been quantitatively demonstrated. To investigate, we cut multiblock tissue sections of tonsil, liver, and kidney at 2, 4, 6, and 8 μm thicknesses. Interferometry measurements of the sectioned paraffin showed a <1 μm variation within a preset microtome thickness. Sections were then immunostained with antibodies targeting different cellular localizations; Ki-67 and BCL6 (nuclear), CD7 (membranous), and cytokeratin (cytoplasmic). A pathologist annotated regions of interest for each marker and performed brightfield and whole-slide visual scoring. Then a pixel-wise processing algorithm determined intensity of each pixel in these regions of interest and binned them into predetermined 0, 1+, 2+, or 3+ intensities. Visual scores from brightfield and whole-slide images were highly correlated to the percentage of pixels in each intensity bin. A stepwise increase was observed in pathologist scores and algorithmically defined percentage of pixels in each bin with increasing thickness demonstrating that changes in preset section thickness impacts staining intensity. The use of tissue thickness outside vendors' recommendations might change the intensity including the proportion of positive and negative cells and eventually the overall diagnosis outcome. Therefore, we recommend that tissue be consistently cut within the middle of thickness range specified by the assay manufacturer.</p>","PeriodicalId":520562,"journal":{"name":"Applied immunohistochemistry & molecular morphology : AIMM","volume":" ","pages":"345-355"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1097/PAI.0000000000000593","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied immunohistochemistry & molecular morphology : AIMM","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAI.0000000000000593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

High-quality patient samples are required for reliable immunohistochemistry test outcomes that provide a significant benefit for patient care. Among the preanalytic variables in tissue handling, tissue thickness is thought to be easily controlled; however, whether the thickness of the tissue effects the staining intensity for antibody immunohistochemistry has not been quantitatively demonstrated. To investigate, we cut multiblock tissue sections of tonsil, liver, and kidney at 2, 4, 6, and 8 μm thicknesses. Interferometry measurements of the sectioned paraffin showed a <1 μm variation within a preset microtome thickness. Sections were then immunostained with antibodies targeting different cellular localizations; Ki-67 and BCL6 (nuclear), CD7 (membranous), and cytokeratin (cytoplasmic). A pathologist annotated regions of interest for each marker and performed brightfield and whole-slide visual scoring. Then a pixel-wise processing algorithm determined intensity of each pixel in these regions of interest and binned them into predetermined 0, 1+, 2+, or 3+ intensities. Visual scores from brightfield and whole-slide images were highly correlated to the percentage of pixels in each intensity bin. A stepwise increase was observed in pathologist scores and algorithmically defined percentage of pixels in each bin with increasing thickness demonstrating that changes in preset section thickness impacts staining intensity. The use of tissue thickness outside vendors' recommendations might change the intensity including the proportion of positive and negative cells and eventually the overall diagnosis outcome. Therefore, we recommend that tissue be consistently cut within the middle of thickness range specified by the assay manufacturer.

组织厚度对肿瘤标志物免疫组化染色强度的影响。
高质量的患者样本需要可靠的免疫组织化学测试结果,为患者护理提供显著的好处。在组织处理的前分析变量中,组织厚度被认为是容易控制的;然而,组织厚度是否影响抗体免疫组化染色强度尚未得到定量证明。为了进行研究,我们在2、4、6和8 μm的厚度上切下扁桃体、肝脏和肾脏的多块组织切片。切片石蜡的干涉测量结果显示:a
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信