{"title":"Generation of diverse cortical inhibitory interneurons.","authors":"Khadeejah T Sultan, Song-Hai Shi","doi":"10.1002/wdev.306","DOIUrl":null,"url":null,"abstract":"<p><p>First described by Ramon y Cajal as 'short-axon' cells over a century ago, inhibitory interneurons in the cerebral cortex make up ~20-30% of the neuronal milieu. A key feature of these interneurons is the striking structural and functional diversity, which allows them to modulate neural activity in diverse ways and ultimately endow neural circuits with remarkable computational power. Here, we review our current understanding of the generation of cortical interneurons, with a focus on recent efforts to bridge the gap between progenitor behavior and interneuron production, and how these aspects influence interneuron diversity and organization. WIREs Dev Biol 2018, 7:e306. doi: 10.1002/wdev.306 This article is categorized under: Nervous System Development > Vertebrates: General Principles.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814332/pdf/nihms911699.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
First described by Ramon y Cajal as 'short-axon' cells over a century ago, inhibitory interneurons in the cerebral cortex make up ~20-30% of the neuronal milieu. A key feature of these interneurons is the striking structural and functional diversity, which allows them to modulate neural activity in diverse ways and ultimately endow neural circuits with remarkable computational power. Here, we review our current understanding of the generation of cortical interneurons, with a focus on recent efforts to bridge the gap between progenitor behavior and interneuron production, and how these aspects influence interneuron diversity and organization. WIREs Dev Biol 2018, 7:e306. doi: 10.1002/wdev.306 This article is categorized under: Nervous System Development > Vertebrates: General Principles.
一个多世纪前,拉蒙-卡哈尔(Ramon y Cajal)首次将抑制性中间神经元描述为 "短轴 "细胞,它们在大脑皮层的神经元环境中约占 20-30%。这些中间神经元的一个主要特点是具有惊人的结构和功能多样性,这使它们能够以不同的方式调节神经活动,并最终赋予神经回路非凡的计算能力。在此,我们回顾了我们目前对大脑皮层中间神经元生成的理解,重点是最近为弥合祖细胞行为和中间神经元生成之间的差距所做的努力,以及这些方面如何影响中间神经元的多样性和组织。WIREs Dev Biol 2018, 7:e306. doi: 10.1002/wdev.306 This article is categorized under:神经系统发育 > 脊椎动物:一般原理。
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.