{"title":"Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers.","authors":"Gao-Juan Cao, Xiumei Jiang, Hui Zhang, Jiwen Zheng, Timothy R Croley, Jun-Jie Yin","doi":"10.1080/10590501.2017.1391516","DOIUrl":null,"url":null,"abstract":"<p><p>Research on noble metal nanoparticles (NPs) able to scavenge reactive oxygen species (ROS) has undergone a tremendous growth recently. However, the interactions between ruthenium nanoparticles (Ru NPs) and ROS have never been systematically explored thus far. This research focused on the decomposition of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), scavenging of hydroxyl radicals (<sup>•</sup>OH), superoxide radical (O<sub>2</sub><sup>•-</sup>), singlet oxygen (<sup>1</sup>O<sub>2</sub>), 2,2'-azino-bis(3-ethylbenzenothiazoline- 6-sulfonic acid ion (ABTS<sup>•+</sup>), and 1,1-diphenyl-2-picrylhydrazyl radical (<sup>•</sup>DPPH) in the presence of commercial Ru NPs using the electron spin resonance technique. In vitro cell studies demonstrated that Ru NPs have excellent biocompatibility and exert a cytoprotective effect against oxidative stress. These findings may spark fresh enthusiasm for the applications of Ru NPs under relevant physiologically conditions.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"35 4","pages":"223-238"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2017.1391516","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2017.1391516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 13
Abstract
Research on noble metal nanoparticles (NPs) able to scavenge reactive oxygen species (ROS) has undergone a tremendous growth recently. However, the interactions between ruthenium nanoparticles (Ru NPs) and ROS have never been systematically explored thus far. This research focused on the decomposition of hydrogen peroxide (H2O2), scavenging of hydroxyl radicals (•OH), superoxide radical (O2•-), singlet oxygen (1O2), 2,2'-azino-bis(3-ethylbenzenothiazoline- 6-sulfonic acid ion (ABTS•+), and 1,1-diphenyl-2-picrylhydrazyl radical (•DPPH) in the presence of commercial Ru NPs using the electron spin resonance technique. In vitro cell studies demonstrated that Ru NPs have excellent biocompatibility and exert a cytoprotective effect against oxidative stress. These findings may spark fresh enthusiasm for the applications of Ru NPs under relevant physiologically conditions.
期刊介绍:
Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.