On The Block-Sparse Solution of Single Measurement Vectors.

Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther
{"title":"On The Block-Sparse Solution of Single Measurement Vectors.","authors":"Mohammad Shekaramiz,&nbsp;Todd K Moon,&nbsp;Jacob H Gunther","doi":"10.1109/ACSSC.2015.7421180","DOIUrl":null,"url":null,"abstract":"<p><p>Finding the solution of single measurement vector (SMV) problem with an unknown block-sparsity structure is considered. Here, we propose a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. In order to encourage the block-sparsity structure, we incorporate a parameter called Sigma-Delta as a measure of clumpiness in the supports of the solution. Using the AMP framework reduces the computational load of the proposed SBL algorithm and as a result makes it faster. Furthermore, in terms of the mean-squared error between the true and the reconstructed solution, the algorithm demonstrates an encouraging improvement compared to the other algorithms.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2015 ","pages":"508-512"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2015.7421180","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2015.7421180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/2/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Finding the solution of single measurement vector (SMV) problem with an unknown block-sparsity structure is considered. Here, we propose a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. In order to encourage the block-sparsity structure, we incorporate a parameter called Sigma-Delta as a measure of clumpiness in the supports of the solution. Using the AMP framework reduces the computational load of the proposed SBL algorithm and as a result makes it faster. Furthermore, in terms of the mean-squared error between the true and the reconstructed solution, the algorithm demonstrates an encouraging improvement compared to the other algorithms.

Abstract Image

Abstract Image

Abstract Image

单测量向量的块稀疏解。
研究了具有未知块稀疏性结构的单测量向量问题的求解问题。为了鼓励块稀疏结构,我们将一个称为Sigma-Delta的参数作为解决方案支持的团块度的度量。使用AMP框架减少了所提出的SBL算法的计算量,从而使其更快。此外,在真实解与重建解之间的均方误差方面,与其他算法相比,该算法显示出令人鼓舞的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信