Confocal Vessel Structure Segmentation with Optimized Feature Bank and Random Forests.

Yasmin M Kassim, V B Surya Prasath, Olga V Glinskii, Vladislav V Glinsky, Virginia H Huxley, Kannappan Palaniappan
{"title":"Confocal Vessel Structure Segmentation with Optimized Feature Bank and Random Forests.","authors":"Yasmin M Kassim,&nbsp;V B Surya Prasath,&nbsp;Olga V Glinskii,&nbsp;Vladislav V Glinsky,&nbsp;Virginia H Huxley,&nbsp;Kannappan Palaniappan","doi":"10.1109/AIPR.2016.8010580","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.</p>","PeriodicalId":73278,"journal":{"name":"IEEE Applied Imagery Pattern Recognition Workshop : [proceedings]. IEEE Applied Imagery Pattern Recognition Workshop","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/AIPR.2016.8010580","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Applied Imagery Pattern Recognition Workshop : [proceedings]. IEEE Applied Imagery Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2016.8010580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.

Abstract Image

Abstract Image

Abstract Image

基于优化特征库和随机森林的共聚焦血管结构分割。
在本文中,我们考虑了基于共聚焦显微镜的血管分割与优化特征和随机森林分类。通过利用多尺度容器特定特征来捕捉曲线结构,如Hessian特征值的Frobenius范数、Laplacian of gaussian (LoG)、定向二阶导数、线检测器和LoG尺度图掩码强度。我们在具有挑战性的成像条件下获得了更好的分割结果。我们使用随机森林分类器进行二值分割。小鼠硬脑膜共聚焦显微血管分割实验结果表明,与全局分割方法相比,我们获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信