The Highly Adaptive Lasso Estimator.

David Benkeser, Mark van der Laan
{"title":"The Highly Adaptive Lasso Estimator.","authors":"David Benkeser, Mark van der Laan","doi":"10.1109/DSAA.2016.93","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of a regression functions is a common goal of statistical learning. We propose a novel nonparametric regression estimator that, in contrast to many existing methods, does not rely on local smoothness assumptions nor is it constructed using local smoothing techniques. Instead, our estimator respects global smoothness constraints by virtue of falling in a class of right-hand continuous functions with left-hand limits that have variation norm bounded by a constant. Using empirical process theory, we establish a fast minimal rate of convergence of our proposed estimator and illustrate how such an estimator can be constructed using standard software. In simulations, we show that the finite-sample performance of our estimator is competitive with other popular machine learning techniques across a variety of data generating mechanisms. We also illustrate competitive performance in real data examples using several publicly available data sets.</p>","PeriodicalId":92122,"journal":{"name":"Proceedings of the ... International Conference on Data Science and Advanced Analytics. IEEE International Conference on Data Science and Advanced Analytics","volume":"2016 ","pages":"689-696"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662030/pdf/nihms870895.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Data Science and Advanced Analytics. IEEE International Conference on Data Science and Advanced Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of a regression functions is a common goal of statistical learning. We propose a novel nonparametric regression estimator that, in contrast to many existing methods, does not rely on local smoothness assumptions nor is it constructed using local smoothing techniques. Instead, our estimator respects global smoothness constraints by virtue of falling in a class of right-hand continuous functions with left-hand limits that have variation norm bounded by a constant. Using empirical process theory, we establish a fast minimal rate of convergence of our proposed estimator and illustrate how such an estimator can be constructed using standard software. In simulations, we show that the finite-sample performance of our estimator is competitive with other popular machine learning techniques across a variety of data generating mechanisms. We also illustrate competitive performance in real data examples using several publicly available data sets.

Abstract Image

Abstract Image

高度自适应套索估计器
回归函数的估计是统计学习的一个共同目标。我们提出了一种新颖的非参数回归估计器,与许多现有方法不同的是,它不依赖于局部平滑性假设,也不使用局部平滑技术。相反,我们的估计器尊重全局平滑性约束,因为它属于一类具有左手极限的右手连续函数,其变化规范由常数限定。利用经验过程理论,我们建立了所提估计器的快速最小收敛率,并说明了如何使用标准软件构建这种估计器。在模拟中,我们证明了在各种数据生成机制中,我们的估计器的有限样本性能与其他流行的机器学习技术相比具有竞争力。我们还利用几个公开的数据集,在实际数据示例中说明了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信