Claire Keeble, Peter Adam Thwaites, Stuart Barber, Graham Richard Law, Paul David Baxter
{"title":"Adaptation of Chain Event Graphs for use with Case-Control Studies in Epidemiology.","authors":"Claire Keeble, Peter Adam Thwaites, Stuart Barber, Graham Richard Law, Paul David Baxter","doi":"10.1515/ijb-2016-0073","DOIUrl":null,"url":null,"abstract":"<p><p>Case-control studies are used in epidemiology to try to uncover the causes of diseases, but are a retrospective study design known to suffer from non-participation and recall bias, which may explain their decreased popularity in recent years. Traditional analyses report usually only the odds ratio for given exposures and the binary disease status. Chain event graphs are a graphical representation of a statistical model derived from event trees which have been developed in artificial intelligence and statistics, and only recently introduced to the epidemiology literature. They are a modern Bayesian technique which enable prior knowledge to be incorporated into the data analysis using the agglomerative hierarchical clustering algorithm, used to form a suitable chain event graph. Additionally, they can account for missing data and be used to explore missingness mechanisms. Here we adapt the chain event graph framework to suit scenarios often encountered in case-control studies, to strengthen this study design which is time and financially efficient. We demonstrate eight adaptations to the graphs, which consist of two suitable for full case-control study analysis, four which can be used in interim analyses to explore biases, and two which aim to improve the ease and accuracy of analyses. The adaptations are illustrated with complete, reproducible, fully-interpreted examples, including the event tree and chain event graph. Chain event graphs are used here for the first time to summarise non-participation, data collection techniques, data reliability, and disease severity in case-control studies. We demonstrate how these features of a case-control study can be incorporated into the analysis to provide further insight, which can help to identify potential biases and lead to more accurate study results.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"13 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0073","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0073","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Case-control studies are used in epidemiology to try to uncover the causes of diseases, but are a retrospective study design known to suffer from non-participation and recall bias, which may explain their decreased popularity in recent years. Traditional analyses report usually only the odds ratio for given exposures and the binary disease status. Chain event graphs are a graphical representation of a statistical model derived from event trees which have been developed in artificial intelligence and statistics, and only recently introduced to the epidemiology literature. They are a modern Bayesian technique which enable prior knowledge to be incorporated into the data analysis using the agglomerative hierarchical clustering algorithm, used to form a suitable chain event graph. Additionally, they can account for missing data and be used to explore missingness mechanisms. Here we adapt the chain event graph framework to suit scenarios often encountered in case-control studies, to strengthen this study design which is time and financially efficient. We demonstrate eight adaptations to the graphs, which consist of two suitable for full case-control study analysis, four which can be used in interim analyses to explore biases, and two which aim to improve the ease and accuracy of analyses. The adaptations are illustrated with complete, reproducible, fully-interpreted examples, including the event tree and chain event graph. Chain event graphs are used here for the first time to summarise non-participation, data collection techniques, data reliability, and disease severity in case-control studies. We demonstrate how these features of a case-control study can be incorporated into the analysis to provide further insight, which can help to identify potential biases and lead to more accurate study results.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.