{"title":"Comparison of Wear Resistance of Hawley and Vacuum Formed Retainers: An in-vitro Study.","authors":"Moshkelgosha V, Shomali M, Momeni M","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Statement of problem: </strong>As a physical property, wear resistance of the materials used in the fabrication of orthodontic retainers play a significant role in the stability and long term use of the appliances.</p><p><strong>Objectives: </strong>To evaluate the wear resistance of two commonly used materials for orthodontic retainers: Acropars OP, i.e. a polymethyl methacrylate based material, and 3A-GS060, i.e. a polyethylene based material.</p><p><strong>Materials and methods: </strong>For each material, 30 orthodontic retainers were made according to the manufacturers' instructions and a 30×30×2 mm block was cut out from the mid- palatal area of each retainer. Each specimen underwent 1000 cycles of wear stimulation in a pin on disc machine. The depth of wear of each specimen was measured using a Nano Wizard II atomic force microscope in 3 random points of each specimen's wear trough. The average of these three measurements was calculated and considered as mean value wear depth of each specimen (µm).</p><p><strong>Results: </strong>The mean wear depth was 6.10µm and 2.15µm for 3A-GS060 and Acropars OP groups respectively. Independent t-test showed a significant difference between the two groups (<i>p</i> < 0.001). The results show Polymethyl methacrylate base (Acropars) is more wear resistance than the polyethylene based material (3A-GS060).</p><p><strong>Conclusions: </strong>As the higher wear resistance of the fabrication material can improve the retainers' survival time and its cost-effectiveness, VFRs should be avoided in situations that the appliance needs high wear resistance such as bite blocks opposing occlusal forces.</p>","PeriodicalId":53341,"journal":{"name":"Journal of Dental Biomaterial","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/5b/JDB-3-248.PMC5608059.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Biomaterial","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Statement of problem: As a physical property, wear resistance of the materials used in the fabrication of orthodontic retainers play a significant role in the stability and long term use of the appliances.
Objectives: To evaluate the wear resistance of two commonly used materials for orthodontic retainers: Acropars OP, i.e. a polymethyl methacrylate based material, and 3A-GS060, i.e. a polyethylene based material.
Materials and methods: For each material, 30 orthodontic retainers were made according to the manufacturers' instructions and a 30×30×2 mm block was cut out from the mid- palatal area of each retainer. Each specimen underwent 1000 cycles of wear stimulation in a pin on disc machine. The depth of wear of each specimen was measured using a Nano Wizard II atomic force microscope in 3 random points of each specimen's wear trough. The average of these three measurements was calculated and considered as mean value wear depth of each specimen (µm).
Results: The mean wear depth was 6.10µm and 2.15µm for 3A-GS060 and Acropars OP groups respectively. Independent t-test showed a significant difference between the two groups (p < 0.001). The results show Polymethyl methacrylate base (Acropars) is more wear resistance than the polyethylene based material (3A-GS060).
Conclusions: As the higher wear resistance of the fabrication material can improve the retainers' survival time and its cost-effectiveness, VFRs should be avoided in situations that the appliance needs high wear resistance such as bite blocks opposing occlusal forces.