{"title":"Molecular Mechanisms of Spindle Assembly Checkpoint Activation and Silencing.","authors":"Kevin D Corbett","doi":"10.1007/978-3-319-58592-5_18","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryotic cell division, the Spindle Assembly Checkpoint (SAC) plays a key regulatory role by monitoring the status of chromosome-microtubule attachments and allowing chromosome segregation only after all chromosomes are properly attached to spindle microtubules. While the identities of SAC components have been known, in some cases, for over two decades, the molecular mechanisms of the SAC have remained mostly mysterious until very recently. In the past few years, advances in biochemical reconstitution, structural biology, and bioinformatics have fueled an explosion in the molecular understanding of the SAC. This chapter seeks to synthesize these recent advances and place them in a biological context, in order to explain the mechanisms of SAC activation and silencing at a molecular level.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"429-455"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_18","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-58592-5_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 34
Abstract
In eukaryotic cell division, the Spindle Assembly Checkpoint (SAC) plays a key regulatory role by monitoring the status of chromosome-microtubule attachments and allowing chromosome segregation only after all chromosomes are properly attached to spindle microtubules. While the identities of SAC components have been known, in some cases, for over two decades, the molecular mechanisms of the SAC have remained mostly mysterious until very recently. In the past few years, advances in biochemical reconstitution, structural biology, and bioinformatics have fueled an explosion in the molecular understanding of the SAC. This chapter seeks to synthesize these recent advances and place them in a biological context, in order to explain the mechanisms of SAC activation and silencing at a molecular level.
期刊介绍:
Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.