Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit

Fernando Brites , Maximiliano Martin , Isabelle Guillas , Anatol Kontush
{"title":"Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit","authors":"Fernando Brites ,&nbsp;Maximiliano Martin ,&nbsp;Isabelle Guillas ,&nbsp;Anatol Kontush","doi":"10.1016/j.bbacli.2017.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation.</p><p>Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids.</p><p>Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.</p></div>","PeriodicalId":72344,"journal":{"name":"BBA clinical","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbacli.2017.07.002","citationCount":"159","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BBA clinical","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214647417300326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 159

Abstract

Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation.

Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids.

Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.

Abstract Image

Abstract Image

Abstract Image

高密度脂蛋白(HDL)的抗氧化活性:潜在临床益处的机制见解
巨噬细胞摄取低密度脂蛋白(LDL)颗粒是动脉粥样硬化斑块形成的关键步骤,导致泡沫细胞形成。然而,低密度脂蛋白的化学修饰是诱导这一过程的必要条件。致动脉粥样硬化的LDL修饰包括聚集、酶消化和氧化。LDL被单电子(自由基)和双电子氧化剂氧化显著增加LDL对巨噬细胞清道夫受体的亲和力,导致LDL快速吸收和脂肪条纹形成。循环中的高密度脂蛋白(HDL)颗粒,主要是小而致密、富含蛋白质的HDL3,可有效保护LDL免受自由基的氧化损伤,从而抑制促炎氧化脂质的生成。HDL介导的脂质氢过氧化物失活涉及它们最初从LDL转移到HDL,随后通过载脂蛋白A-I的氧化还原活性Met残基还原为无活性的氢氧化物。与大而轻的HDL2相比,HDL3中几种hdl相关酶的浓度升高,并可能参与短链氧化磷脂的失活。因此,HDL代表了一种能够获得和失活致动脉粥样硬化性脂质的多分子复合物。HDL的抗氧化功能可在几种代谢性和炎性疾病中受损。高密度脂蛋白蛋白质组和脂质组的结构和组成异常是这种功能缺陷的基础。伴随的代谢、循环水平、HDL颗粒(主要是小而致密的HDL3)的组成和生物活性的正常化可以构成未来的治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信