DNA Priming Increases Frequency of T-Cell Responses to a Vesicular Stomatitis Virus HIV Vaccine with Specific Enhancement of CD8+ T-Cell Responses by Interleukin-12 Plasmid DNA.
Shuying S Li, Nidhi K Kochar, Marnie Elizaga, Christine M Hay, Gregory J Wilson, Kristen W Cohen, Stephen C De Rosa, Rong Xu, Ayuko Ota-Setlik, Daryl Morris, Greg Finak, Mary Allen, Hong-Van Tieu, Ian Frank, Magdalena E Sobieszczyk, Drew Hannaman, Raphael Gottardo, Peter B Gilbert, Georgia D Tomaras, Lawrence Corey, David K Clarke, Michael A Egan, John H Eldridge, M Juliana McElrath, Nicole Frahm
{"title":"DNA Priming Increases Frequency of T-Cell Responses to a Vesicular Stomatitis Virus HIV Vaccine with Specific Enhancement of CD8<sup>+</sup> T-Cell Responses by Interleukin-12 Plasmid DNA.","authors":"Shuying S Li, Nidhi K Kochar, Marnie Elizaga, Christine M Hay, Gregory J Wilson, Kristen W Cohen, Stephen C De Rosa, Rong Xu, Ayuko Ota-Setlik, Daryl Morris, Greg Finak, Mary Allen, Hong-Van Tieu, Ian Frank, Magdalena E Sobieszczyk, Drew Hannaman, Raphael Gottardo, Peter B Gilbert, Georgia D Tomaras, Lawrence Corey, David K Clarke, Michael A Egan, John H Eldridge, M Juliana McElrath, Nicole Frahm","doi":"10.1128/CVI.00263-17","DOIUrl":null,"url":null,"abstract":"<p><p>The HIV Vaccine Trials Network (HVTN) 087 vaccine trial assessed the effect of increasing doses of pIL-12 (interleukin-12 delivered as plasmid DNA) adjuvant on the immunogenicity of an HIV-1 multiantigen (MAG) DNA vaccine delivered by electroporation and boosted with a vaccine comprising an attenuated vesicular stomatitis virus expressing HIV-1 Gag (VSV-Gag). We randomized 100 healthy adults to receive placebo or 3 mg HIV-MAG DNA vaccine (ProfectusVax HIV-1 <i>gag</i>/<i>pol</i> or ProfectusVax <i>nef</i>/<i>tat</i>/<i>vif</i>, <i>env</i>) coadministered with pIL-12 at 0, 250, 1,000, or 1,500 μg intramuscularly by electroporation at 0, 1, and 3 months followed by intramuscular inoculation with 3.4 × 10<sup>7</sup> PFU VSV-Gag vaccine at 6 months. Immune responses were assessed after the prime and boost and 6 months after the last vaccination. High-dose pIL-12 increased the magnitude of CD8<sup>+</sup> T-cell responses postboost compared to no pIL-12 (<i>P</i> = 0.02), while CD4<sup>+</sup> T-cell responses after the prime were higher in the absence of pIL-12 than with low- and medium-dose pIL-12 (<i>P</i> ≤ 0.05). The VSV boost increased Gag-specific CD4<sup>+</sup> and CD8<sup>+</sup> T-cell responses in all groups (<i>P</i> < 0.001 for CD4<sup>+</sup> T cells), inducing a median of four Gag epitopes in responders. Six to 9 months after the boost, responses decreased in magnitude, but CD8<sup>+</sup> T-cell response rates were maintained. The addition of a DNA prime dramatically improved responses to the VSV vaccine tested previously in the HVTN 090 trial, leading to broad epitope targeting and maintained CD8<sup>+</sup> T-cell response rates at early memory. The addition of high-dose pIL-12 given with a DNA prime by electroporation and boosted with VSV-Gag increased the CD8<sup>+</sup> T-cell responses but decreased the CD4<sup>+</sup> responses. This approach may be advantageous in reshaping the T-cell responses to a variety of chronic infections or tumors. (This study has been registered at ClinicalTrials.gov under registration no. NCT01578889.).</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00263-17","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00263-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 29
Abstract
The HIV Vaccine Trials Network (HVTN) 087 vaccine trial assessed the effect of increasing doses of pIL-12 (interleukin-12 delivered as plasmid DNA) adjuvant on the immunogenicity of an HIV-1 multiantigen (MAG) DNA vaccine delivered by electroporation and boosted with a vaccine comprising an attenuated vesicular stomatitis virus expressing HIV-1 Gag (VSV-Gag). We randomized 100 healthy adults to receive placebo or 3 mg HIV-MAG DNA vaccine (ProfectusVax HIV-1 gag/pol or ProfectusVax nef/tat/vif, env) coadministered with pIL-12 at 0, 250, 1,000, or 1,500 μg intramuscularly by electroporation at 0, 1, and 3 months followed by intramuscular inoculation with 3.4 × 107 PFU VSV-Gag vaccine at 6 months. Immune responses were assessed after the prime and boost and 6 months after the last vaccination. High-dose pIL-12 increased the magnitude of CD8+ T-cell responses postboost compared to no pIL-12 (P = 0.02), while CD4+ T-cell responses after the prime were higher in the absence of pIL-12 than with low- and medium-dose pIL-12 (P ≤ 0.05). The VSV boost increased Gag-specific CD4+ and CD8+ T-cell responses in all groups (P < 0.001 for CD4+ T cells), inducing a median of four Gag epitopes in responders. Six to 9 months after the boost, responses decreased in magnitude, but CD8+ T-cell response rates were maintained. The addition of a DNA prime dramatically improved responses to the VSV vaccine tested previously in the HVTN 090 trial, leading to broad epitope targeting and maintained CD8+ T-cell response rates at early memory. The addition of high-dose pIL-12 given with a DNA prime by electroporation and boosted with VSV-Gag increased the CD8+ T-cell responses but decreased the CD4+ responses. This approach may be advantageous in reshaping the T-cell responses to a variety of chronic infections or tumors. (This study has been registered at ClinicalTrials.gov under registration no. NCT01578889.).
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.