Models of convergent extension during morphogenesis.

Q1 Biochemistry, Genetics and Molecular Biology
Asako Shindo
{"title":"Models of convergent extension during morphogenesis.","authors":"Asako Shindo","doi":"10.1002/wdev.293","DOIUrl":null,"url":null,"abstract":"<p><p>Convergent extension (CE) is a fundamental and conserved collective cell movement that forms elongated tissues during embryonic development. Thus far, studies have demonstrated two different mechanistic models of collective cell movements during CE. The first, termed the crawling mode, was discovered in the process of notochord formation in Xenopus laevis embryos, and has been the established model of CE for decades. The second model, known as the contraction mode, was originally reported in studies of germband extension in Drosophila melanogaster embryos and was recently demonstrated to be a conserved mechanism of CE among tissues and stages of development across species. This review summarizes the two modes of CE by focusing on the differences in cytoskeletal behaviors and relative expression of cell adhesion molecules. The upstream molecules regulating these machineries are also discussed. There are abundant studies of notochord formation in X. laevis embryos, as this was one of the pioneering model systems in this field. Therefore, the present review discusses these findings as an approach to the fundamental biological question of collective cell regulation. WIREs Dev Biol 2018, 7:e293. doi: 10.1002/wdev.293 This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation Comparative Development and Evolution > Model Systems.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.293","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 71

Abstract

Convergent extension (CE) is a fundamental and conserved collective cell movement that forms elongated tissues during embryonic development. Thus far, studies have demonstrated two different mechanistic models of collective cell movements during CE. The first, termed the crawling mode, was discovered in the process of notochord formation in Xenopus laevis embryos, and has been the established model of CE for decades. The second model, known as the contraction mode, was originally reported in studies of germband extension in Drosophila melanogaster embryos and was recently demonstrated to be a conserved mechanism of CE among tissues and stages of development across species. This review summarizes the two modes of CE by focusing on the differences in cytoskeletal behaviors and relative expression of cell adhesion molecules. The upstream molecules regulating these machineries are also discussed. There are abundant studies of notochord formation in X. laevis embryos, as this was one of the pioneering model systems in this field. Therefore, the present review discusses these findings as an approach to the fundamental biological question of collective cell regulation. WIREs Dev Biol 2018, 7:e293. doi: 10.1002/wdev.293 This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation Comparative Development and Evolution > Model Systems.

Abstract Image

Abstract Image

Abstract Image

形态发生过程中的收敛扩展模式。
趋同延伸(CE)是胚胎发育过程中形成细长组织的基本和保守的集体细胞运动。到目前为止,研究已经证明了CE期间集体细胞运动的两种不同机制模型。第一种被称为爬行模式,是在非洲爪蟾胚胎脊索形成过程中发现的,几十年来一直是建立的CE模型。第二种模式被称为收缩模式,最初是在果蝇胚胎的种带扩展研究中报道的,最近被证明是跨物种组织和发育阶段之间CE的保守机制。本文综述了两种CE模式,重点介绍了细胞骨架行为和细胞粘附分子相对表达的差异。本文还讨论了调控这些机制的上游分子。关于脊索形成的研究很多,这是该领域的先驱模式系统之一。因此,本综述讨论了这些发现,作为解决集体细胞调节的基本生物学问题的一种方法。中国生物医学工程学报,2018,32(1):391 - 391。doi: 10.1002 / wdev.293本文分类为:早期胚胎发育>原肠胚形成与神经发育比较发育与进化>模型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信