Artificial Chromosomes and Strategies to Initiate Epigenetic Centromere Establishment.

Q2 Medicine
Evelyne J Barrey, Patrick Heun
{"title":"Artificial Chromosomes and Strategies to Initiate Epigenetic Centromere Establishment.","authors":"Evelyne J Barrey,&nbsp;Patrick Heun","doi":"10.1007/978-3-319-58592-5_8","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, various synthetic approaches have been developed to address the question of what directs centromere establishment and maintenance. In this chapter, we will discuss how approaches aimed at constructing synthetic centromeres have co-evolved with and contributed to shape the theory describing the determinants of centromere identity. We will first review lessons learned from artificial chromosomes created from \"naked\" centromeric sequences to investigate the role of the underlying DNA for centromere formation. We will then discuss how several studies, which applied removal of endogenous centromeres or over-expression of the centromere-specific histone CENP-A, helped to investigate the contribution of chromatin context to centromere establishment. Finally, we will examine various biosynthetic approaches taking advantage of targeting specific proteins to ectopic sites in the genome to dissect the role of many centromere-associated proteins and chromatin modifiers for centromere inheritance and function. Together, these studies showed that chromatin context matters, particularly proximity to heterochromatin or repetitive DNA sequences. Moreover, despite the important contribution of centromeric DNA, the centromere-specific histone H3-variant CENP-A emerges as a key epigenetic mark to establish and maintain functional centromeres on artificial chromosomes or at ectopic sites of the genome.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_8","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-58592-5_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10

Abstract

In recent years, various synthetic approaches have been developed to address the question of what directs centromere establishment and maintenance. In this chapter, we will discuss how approaches aimed at constructing synthetic centromeres have co-evolved with and contributed to shape the theory describing the determinants of centromere identity. We will first review lessons learned from artificial chromosomes created from "naked" centromeric sequences to investigate the role of the underlying DNA for centromere formation. We will then discuss how several studies, which applied removal of endogenous centromeres or over-expression of the centromere-specific histone CENP-A, helped to investigate the contribution of chromatin context to centromere establishment. Finally, we will examine various biosynthetic approaches taking advantage of targeting specific proteins to ectopic sites in the genome to dissect the role of many centromere-associated proteins and chromatin modifiers for centromere inheritance and function. Together, these studies showed that chromatin context matters, particularly proximity to heterochromatin or repetitive DNA sequences. Moreover, despite the important contribution of centromeric DNA, the centromere-specific histone H3-variant CENP-A emerges as a key epigenetic mark to establish and maintain functional centromeres on artificial chromosomes or at ectopic sites of the genome.

人工染色体和启动表观遗传着丝粒建立的策略。
近年来,各种合成方法已经发展到解决是什么指导着丝粒建立和维持的问题。在本章中,我们将讨论旨在构建合成着丝粒的方法如何与描述着丝粒同一性决定因素的理论共同进化并做出贡献。我们将首先回顾从“裸”着丝粒序列中产生的人工染色体的经验教训,以研究底层DNA对着丝粒形成的作用。然后,我们将讨论几项研究是如何通过去除内源性着丝粒或过度表达着丝粒特异性组蛋白CENP-A来帮助研究染色质环境对着丝粒建立的贡献的。最后,我们将研究各种生物合成方法,利用靶向基因组中异位位点的特定蛋白质来剖析许多着丝粒相关蛋白质和染色质修饰剂对着丝粒遗传和功能的作用。总之,这些研究表明染色质背景很重要,特别是接近异染色质或重复DNA序列。此外,尽管着丝粒DNA的重要贡献,着丝粒特异性组蛋白h3变体CENP-A作为在人工染色体或基因组异位位点上建立和维持功能着丝粒的关键表观遗传标记出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信