{"title":"Centrochromatin of Fungi.","authors":"Steven Friedman, Michael Freitag","doi":"10.1007/978-3-319-58592-5_4","DOIUrl":null,"url":null,"abstract":"<p><p>The centromere is an essential chromosomal locus that dictates the nucleation point for assembly of the kinetochore and subsequent attachment of spindle microtubules during chromosome segregation. Research over the last decades demonstrated that centromeres are defined by a combination of genetic and epigenetic factors. Recent work showed that centromeres are quite diverse and flexible and that many types of centromere sequences and centromeric chromatin (\"centrochromatin\") have evolved. The kingdom of the fungi serves as an outstanding example of centromere plasticity, including organisms with centromeres as diverse as 0.15-300 kb in length, and with different types of chromatin states for most species examined thus far. Some of the species in the less familiar taxa provide excellent opportunities to help us better understand centromere biology in all eukaryotes, which may improve treatment options against fungal infection, and biotechnologies based on fungi. This review summarizes the current knowledge of fungal centromeres and centrochromatin, including an outlook for future research.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"85-109"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_4","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-58592-5_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 12
Abstract
The centromere is an essential chromosomal locus that dictates the nucleation point for assembly of the kinetochore and subsequent attachment of spindle microtubules during chromosome segregation. Research over the last decades demonstrated that centromeres are defined by a combination of genetic and epigenetic factors. Recent work showed that centromeres are quite diverse and flexible and that many types of centromere sequences and centromeric chromatin ("centrochromatin") have evolved. The kingdom of the fungi serves as an outstanding example of centromere plasticity, including organisms with centromeres as diverse as 0.15-300 kb in length, and with different types of chromatin states for most species examined thus far. Some of the species in the less familiar taxa provide excellent opportunities to help us better understand centromere biology in all eukaryotes, which may improve treatment options against fungal infection, and biotechnologies based on fungi. This review summarizes the current knowledge of fungal centromeres and centrochromatin, including an outlook for future research.
期刊介绍:
Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.