{"title":"[Confirming the Utility of RAISUS Antifungal Susceptibility Testing by New-Software].","authors":"Tomoko Ono, Hiroyuki Suematsu, Haruki Sawamura, Yuka Yamagishi, Hiroshige Mikamo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical and Laboratory Standards Institute (CLSI) methods for susceptibility tests of yeast are used in Japan. On the other hand, the methods have some disadvantage; 1) reading at 24 and 48 h, 2) using unclear scale, approximately 50% inhibition, to determine MICs, 3) calculating trailing growth and paradoxical effects. These makes it difficult to test the susuceptibility for yeasts. Old software of RAISUS, Ver. 6.0 series, resolved problem 1) and 2) but did not resolve problem 3). Recently, new software of RAISUS, Ver. 7.0 series, resolved problem 3). We confirmed that using the new software made it clear whether all these issue were settled or not. Eighty-four Candida isolated from Aichi Medical University was used in this study. We compared the MICs obtained by using RAISUS antifungal susceptibility testing of yeasts RSMY1, RSMY1, with those obtained by using ASTY. The concordance rates (±four-fold of MICs) between the MICs obtained by using ASTY and RSMY1 with the new software were more than 90%, except for miconazole (MCZ). The rate of MCZ was low, but MICs obtained by using CLSI methods and Yeast-like Fungus DP 'EIKEN' methods, E-DP, showed equivalent MICs of RSMY1 using the new software. The frequency of skip effects on RSMY1 using the new software markedly decreased relative to RSMY1 using the old software. In case of showing trailing growth, the new software of RAISUS made it possible to choice the correct MICs and to put up the sign of trailing growth on the result screen. New software of RAISUS enhances its usability and the accuracy of MICs. Using automatic instrument to determine MICs is useful to obtain objective results easily.</p>","PeriodicalId":74740,"journal":{"name":"Rinsho Biseibutsu Jinsoku Shindan Kenkyukai shi = JARMAM : Journal of the Association for Rapid Method and Automation in Microbiology","volume":"27 2","pages":"47-56"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rinsho Biseibutsu Jinsoku Shindan Kenkyukai shi = JARMAM : Journal of the Association for Rapid Method and Automation in Microbiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical and Laboratory Standards Institute (CLSI) methods for susceptibility tests of yeast are used in Japan. On the other hand, the methods have some disadvantage; 1) reading at 24 and 48 h, 2) using unclear scale, approximately 50% inhibition, to determine MICs, 3) calculating trailing growth and paradoxical effects. These makes it difficult to test the susuceptibility for yeasts. Old software of RAISUS, Ver. 6.0 series, resolved problem 1) and 2) but did not resolve problem 3). Recently, new software of RAISUS, Ver. 7.0 series, resolved problem 3). We confirmed that using the new software made it clear whether all these issue were settled or not. Eighty-four Candida isolated from Aichi Medical University was used in this study. We compared the MICs obtained by using RAISUS antifungal susceptibility testing of yeasts RSMY1, RSMY1, with those obtained by using ASTY. The concordance rates (±four-fold of MICs) between the MICs obtained by using ASTY and RSMY1 with the new software were more than 90%, except for miconazole (MCZ). The rate of MCZ was low, but MICs obtained by using CLSI methods and Yeast-like Fungus DP 'EIKEN' methods, E-DP, showed equivalent MICs of RSMY1 using the new software. The frequency of skip effects on RSMY1 using the new software markedly decreased relative to RSMY1 using the old software. In case of showing trailing growth, the new software of RAISUS made it possible to choice the correct MICs and to put up the sign of trailing growth on the result screen. New software of RAISUS enhances its usability and the accuracy of MICs. Using automatic instrument to determine MICs is useful to obtain objective results easily.