The Expressed Genome in Cardiovascular Diseases and Stroke: Refinement, Diagnosis, and Prediction: A Scientific Statement From the American Heart Association.
Kiran Musunuru, Erik Ingelsson, Myriam Fornage, Peter Liu, Anne M Murphy, L Kristin Newby, Christopher Newton-Cheh, Marco V Perez, Deepak Voora, Daniel Woo
{"title":"The Expressed Genome in Cardiovascular Diseases and Stroke: Refinement, Diagnosis, and Prediction: A Scientific Statement From the American Heart Association.","authors":"Kiran Musunuru, Erik Ingelsson, Myriam Fornage, Peter Liu, Anne M Murphy, L Kristin Newby, Christopher Newton-Cheh, Marco V Perez, Deepak Voora, Daniel Woo","doi":"10.1161/HCG.0000000000000037","DOIUrl":null,"url":null,"abstract":"<p><p>There have been major advances in our knowledge of the contribution of DNA sequence variations to cardiovascular disease and stroke. However, the inner workings of the body reflect the complex interplay of factors beyond the DNA sequence, including epigenetic modifications, RNA transcripts, proteins, and metabolites, which together can be considered the \"expressed genome.\" The emergence of high-throughput technologies, including epigenomics, transcriptomics, proteomics, and metabolomics, is now making it possible to address the contributions of the expressed genome to cardiovascular disorders. This statement describes how the expressed genome can currently and, in the future, potentially be used to diagnose diseases and to predict who will develop diseases such as coronary artery disease, stroke, heart failure, and arrhythmias.</p>","PeriodicalId":10277,"journal":{"name":"Circulation: Cardiovascular Genetics","volume":"10 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/HCG.0000000000000037","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/HCG.0000000000000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
There have been major advances in our knowledge of the contribution of DNA sequence variations to cardiovascular disease and stroke. However, the inner workings of the body reflect the complex interplay of factors beyond the DNA sequence, including epigenetic modifications, RNA transcripts, proteins, and metabolites, which together can be considered the "expressed genome." The emergence of high-throughput technologies, including epigenomics, transcriptomics, proteomics, and metabolomics, is now making it possible to address the contributions of the expressed genome to cardiovascular disorders. This statement describes how the expressed genome can currently and, in the future, potentially be used to diagnose diseases and to predict who will develop diseases such as coronary artery disease, stroke, heart failure, and arrhythmias.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease.