{"title":"Calcium-Dependent Regulation of Ion Channels.","authors":"Vikas N Shah, Benjamin Chagot, Walter J Chazin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium plays an important role in regulating hundreds of biological processes due to its primary role as one of the most ubiquitous second messengers. As a result, the levels of calcium are tightly regulated as are the peak and trough calcium concentrations during a calcium signal. Calcium levels are controlled via a variety of feedback mechanisms and exchangers/transporters. Here the role of calcium in the feedback regulation of ion channel function is reviewed, with an emphasis on the molecular mechanisms governing calcium-dependent function. In particular, the role of calcium in the regulation of voltage-gated sodium, calcium, and potassium channels are reviewed as well as its effects on the ryanodine receptor.</p>","PeriodicalId":89538,"journal":{"name":"Calcium binding proteins","volume":"1 4","pages":"203-212"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531595/pdf/nihms883778.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcium binding proteins","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Calcium plays an important role in regulating hundreds of biological processes due to its primary role as one of the most ubiquitous second messengers. As a result, the levels of calcium are tightly regulated as are the peak and trough calcium concentrations during a calcium signal. Calcium levels are controlled via a variety of feedback mechanisms and exchangers/transporters. Here the role of calcium in the feedback regulation of ion channel function is reviewed, with an emphasis on the molecular mechanisms governing calcium-dependent function. In particular, the role of calcium in the regulation of voltage-gated sodium, calcium, and potassium channels are reviewed as well as its effects on the ryanodine receptor.