A new multiple robot path planning algorithm: dynamic distributed particle swarm optimization.

Robotics and biomimetics Pub Date : 2017-01-01 Epub Date: 2017-11-02 DOI:10.1186/s40638-017-0062-6
Asma Ayari, Sadok Bouamama
{"title":"A new multiple robot path planning algorithm: dynamic distributed particle swarm optimization.","authors":"Asma Ayari,&nbsp;Sadok Bouamama","doi":"10.1186/s40638-017-0062-6","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple robot systems have become a major study concern in the field of robotic research. Their control becomes unreliable and even infeasible if the number of robots increases. In this paper, a new dynamic distributed particle swarm optimization (D<sup>2</sup>PSO) algorithm is proposed for trajectory path planning of multiple robots in order to find collision-free optimal path for each robot in the environment. The proposed approach consists in calculating two local optima detectors, LOD<sub>pBest</sub> and LOD<sub>gBest</sub>. Particles which are unable to improve their personal best and global best for predefined number of successive iterations would be replaced with restructured ones. Stagnation and local optima problems would be avoided by adding diversity to the population, without losing the fast convergence characteristic of PSO. Experiments with multiple robots are provided and proved effectiveness of such approach compared with the distributed PSO.</p>","PeriodicalId":90966,"journal":{"name":"Robotics and biomimetics","volume":"4 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40638-017-0062-6","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40638-017-0062-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Multiple robot systems have become a major study concern in the field of robotic research. Their control becomes unreliable and even infeasible if the number of robots increases. In this paper, a new dynamic distributed particle swarm optimization (D2PSO) algorithm is proposed for trajectory path planning of multiple robots in order to find collision-free optimal path for each robot in the environment. The proposed approach consists in calculating two local optima detectors, LODpBest and LODgBest. Particles which are unable to improve their personal best and global best for predefined number of successive iterations would be replaced with restructured ones. Stagnation and local optima problems would be avoided by adding diversity to the population, without losing the fast convergence characteristic of PSO. Experiments with multiple robots are provided and proved effectiveness of such approach compared with the distributed PSO.

Abstract Image

Abstract Image

Abstract Image

一种新的多机器人路径规划算法:动态分布粒子群优化。
多机器人系统已成为机器人研究领域的一个重要课题。如果机器人数量增加,他们的控制就变得不可靠,甚至不可行。本文提出了一种新的动态分布式粒子群优化算法(D2PSO),用于多机器人的轨迹路径规划,为环境中每个机器人寻找无碰撞的最优路径。该方法包括计算两个局部最优检测器LODpBest和LODgBest。对于无法在预定次数的连续迭代中提高其个人最佳和全局最佳的粒子,将被重构的粒子所取代。通过增加种群的多样性,可以避免停滞和局部最优问题,同时又不会失去粒子群算法的快速收敛特性。在多个机器人上进行了实验,并与分布式粒子群算法进行了比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信