FDT 2.0: Improving scalability of the fuzzy decision tree induction tool - integrating database storage.

Erin-Elizabeth A Durham, Xiaxia Yu, Robert W Harrison
{"title":"FDT 2.0: Improving scalability of the fuzzy decision tree induction tool - integrating database storage.","authors":"Erin-Elizabeth A Durham,&nbsp;Xiaxia Yu,&nbsp;Robert W Harrison","doi":"10.1109/CICARE.2014.7007853","DOIUrl":null,"url":null,"abstract":"<p><p>Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.</p>","PeriodicalId":92121,"journal":{"name":"Proceedings of the ... IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE) : ... IEEE Symposium Series on Computational Intelligence (SSCI). IEEE Symposium on Computational Intelligence in Healthcare and e-h...","volume":"2014 ","pages":"187-190"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CICARE.2014.7007853","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE) : ... IEEE Symposium Series on Computational Intelligence (SSCI). IEEE Symposium on Computational Intelligence in Healthcare and e-h...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICARE.2014.7007853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.

Abstract Image

FDT 2.0:提高模糊决策树归纳工具的可扩展性——集成数据库存储。
有效的机器学习可以有效地处理大型数据集。处理大数据的一个关键特性是使用MySQL等数据库。免费软件模糊决策树归纳工具FDT是一种可扩展的监督分类软件工具,实现了模糊决策树。它基于一种优化的模糊ID3 (FID3)算法。FDT 2.0通过弥合数据科学和数据工程之间的差距,在FDT 1.0的基础上进行了改进:它将一个强大的决策工具与用于未来决策的数据保留相结合,因此该工具不需要在每次需要新决策时从头开始重新校准。本文简要介绍了自由软件FDT工具的分析能力及其主要特性和功能;包括来自HIV、microrna和srna的大型生物数据集的示例。这项工作展示了如何将模糊决策算法与现代数据库技术相结合。此外,我们表明,在当今的数据分析世界中,将模糊决策树归纳工具与数据库存储集成可以实现最佳的用户满意度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信