Combining information from multiple complex surveys.

IF 1.2 4区 数学 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS
Survey Methodology Pub Date : 2014-12-01 Epub Date: 2014-12-19
Qi Dong, Michael R Elliott, Trivellore E Raghunathan
{"title":"Combining information from multiple complex surveys.","authors":"Qi Dong,&nbsp;Michael R Elliott,&nbsp;Trivellore E Raghunathan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript describes the use of multiple imputation to combine information from multiple surveys of the same underlying population. We use a newly developed method to generate synthetic populations nonparametrically using a finite population Bayesian bootstrap that automatically accounting for complex sample designs. We then analyze each synthetic population with standard complete-data software for simple random samples and obtain valid inference by combining the point and variance estimates using extensions of existing combining rules for synthetic data. We illustrate the approach by combining data from the 2006 National Health Interview Survey (NHIS) and the 2006 Medical Expenditure Panel Survey (MEPS).</p>","PeriodicalId":51191,"journal":{"name":"Survey Methodology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708582/pdf/nihms921254.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey Methodology","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript describes the use of multiple imputation to combine information from multiple surveys of the same underlying population. We use a newly developed method to generate synthetic populations nonparametrically using a finite population Bayesian bootstrap that automatically accounting for complex sample designs. We then analyze each synthetic population with standard complete-data software for simple random samples and obtain valid inference by combining the point and variance estimates using extensions of existing combining rules for synthetic data. We illustrate the approach by combining data from the 2006 National Health Interview Survey (NHIS) and the 2006 Medical Expenditure Panel Survey (MEPS).

结合多个复杂调查的信息。
这篇手稿描述了使用多重imputation来结合来自同一潜在人群的多重调查的信息。我们使用一种新开发的方法来生成非参数合成总体,使用有限总体贝叶斯自举法,自动考虑复杂的样本设计。然后,我们用简单随机样本的标准完整数据软件分析每个合成总体,并利用现有合成数据组合规则的扩展,通过结合点和方差估计获得有效的推断。我们通过结合2006年全国健康访谈调查(NHIS)和2006年医疗支出小组调查(MEPS)的数据来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Survey Methodology
Survey Methodology 数学-统计学与概率论
CiteScore
0.80
自引率
22.20%
发文量
0
审稿时长
>12 weeks
期刊介绍: The journal publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信