Regularized estimation in sparse high-dimensional multivariate regression, with application to a DNA methylation study.

Pub Date : 2017-07-26 DOI:10.1515/sagmb-2016-0073
Haixiang Zhang, Yinan Zheng, Grace Yoon, Zhou Zhang, Tao Gao, Brian Joyce, Wei Zhang, Joel Schwartz, Pantel Vokonas, Elena Colicino, Andrea Baccarelli, Lifang Hou, Lei Liu
{"title":"Regularized estimation in sparse high-dimensional multivariate regression, with application to a DNA methylation study.","authors":"Haixiang Zhang,&nbsp;Yinan Zheng,&nbsp;Grace Yoon,&nbsp;Zhou Zhang,&nbsp;Tao Gao,&nbsp;Brian Joyce,&nbsp;Wei Zhang,&nbsp;Joel Schwartz,&nbsp;Pantel Vokonas,&nbsp;Elena Colicino,&nbsp;Andrea Baccarelli,&nbsp;Lifang Hou,&nbsp;Lei Liu","doi":"10.1515/sagmb-2016-0073","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we consider variable selection for correlated high dimensional DNA methylation markers as multivariate outcomes. A novel weighted square-root LASSO procedure is proposed to estimate the regression coefficient matrix. A key feature of this method is tuning-insensitivity, which greatly simplifies the computation by obviating cross validation for penalty parameter selection. A precision matrix obtained via the constrained ℓ1 minimization method is used to account for the within-subject correlation among multivariate outcomes. Oracle inequalities of the regularized estimators are derived. The performance of our proposed method is illustrated via extensive simulation studies. We apply our method to study the relation between smoking and high dimensional DNA methylation markers in the Normative Aging Study (NAS).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0073","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this article, we consider variable selection for correlated high dimensional DNA methylation markers as multivariate outcomes. A novel weighted square-root LASSO procedure is proposed to estimate the regression coefficient matrix. A key feature of this method is tuning-insensitivity, which greatly simplifies the computation by obviating cross validation for penalty parameter selection. A precision matrix obtained via the constrained ℓ1 minimization method is used to account for the within-subject correlation among multivariate outcomes. Oracle inequalities of the regularized estimators are derived. The performance of our proposed method is illustrated via extensive simulation studies. We apply our method to study the relation between smoking and high dimensional DNA methylation markers in the Normative Aging Study (NAS).

Abstract Image

Abstract Image

分享
查看原文
稀疏高维多元回归中的正则化估计,并应用于DNA甲基化研究。
在本文中,我们考虑相关高维DNA甲基化标记的变量选择作为多变量结果。提出了一种新的加权平方根LASSO方法来估计回归系数矩阵。该方法的一个关键特点是调优不敏感,避免了惩罚参数选择的交叉验证,大大简化了计算。通过约束最小化方法得到的精度矩阵用于解释多变量结果之间的主体内相关性。推导了正则估计量的Oracle不等式。我们提出的方法的性能是通过广泛的仿真研究说明。我们应用我们的方法在规范衰老研究(NAS)中研究吸烟与高维DNA甲基化标记之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信