{"title":"Historical View on Lead: Guidelines and Regulations.","authors":"Hana R Pohl, Susan Z Ingber, Henry G Abadin","doi":"10.1515/9783110434330-013","DOIUrl":null,"url":null,"abstract":"<p><p>Lead has been used in many commodities for centuries. As a result, human exposure has occurred through the production and use of these lead-containing products. For example, leaded gasoline, lead-based paint, and lead solder/pipes in water distribution systems have been important in terms of exposure potential to the general population. Worker exposures occur in various industrial activities such as lead smelting and refining, battery manufacturing, steel welding or cutting operations, printing, and construction. Some industrial locations have also been a source of exposure to the surrounding communities. While the toxicity of relatively high lead exposures has been recognized for centuries, modern scientific studies have shown adverse health effects at very low doses, particularly in the developing nervous system of fetuses and children. This chapter reflects on historical and current views on lead toxicity. It also addresses the development and evolution of exposure prevention policies. As discussed here, these lead policies target a variety of potential exposure routes and sources. The changes reflect our better understanding of lead toxicity. The chapter provides lead-related guidelines and regulations currently valid in the U. S. and in many countries around the world. The reader will learn about the significant progress that has been made through regulations and guidelines to reduce exposure and prevent lead toxicity.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"17 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/9783110434330-013","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal ions in life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110434330-013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Lead has been used in many commodities for centuries. As a result, human exposure has occurred through the production and use of these lead-containing products. For example, leaded gasoline, lead-based paint, and lead solder/pipes in water distribution systems have been important in terms of exposure potential to the general population. Worker exposures occur in various industrial activities such as lead smelting and refining, battery manufacturing, steel welding or cutting operations, printing, and construction. Some industrial locations have also been a source of exposure to the surrounding communities. While the toxicity of relatively high lead exposures has been recognized for centuries, modern scientific studies have shown adverse health effects at very low doses, particularly in the developing nervous system of fetuses and children. This chapter reflects on historical and current views on lead toxicity. It also addresses the development and evolution of exposure prevention policies. As discussed here, these lead policies target a variety of potential exposure routes and sources. The changes reflect our better understanding of lead toxicity. The chapter provides lead-related guidelines and regulations currently valid in the U. S. and in many countries around the world. The reader will learn about the significant progress that has been made through regulations and guidelines to reduce exposure and prevent lead toxicity.