Analysis of Incomplete Longitudinal Binary Data-A Combined Markov's Transition and Logistic Model for Non-ignorable Missingness.

IF 0.6 Q4 MATHEMATICS, APPLIED
Francis Erebholo, Paul Bezandry, Victor Apprey, John Kwagyan
{"title":"Analysis of Incomplete Longitudinal Binary Data-A Combined Markov's Transition and Logistic Model for Non-ignorable Missingness.","authors":"Francis Erebholo,&nbsp;Paul Bezandry,&nbsp;Victor Apprey,&nbsp;John Kwagyan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The problem of incomplete data is a common phenomenon in research that involves the longitudinal design approach. We investigate and develop a likelihood-based approach for incomplete longitudinal binary data using the disposition model when the missing value mechanism is non-ignorable. We combined Markov's transition and a logistic regression model to build the dropout process and model the response using conditional logistic regression model. By holding the missingness parameter that is weakly identified constant, we analyzed their effects through a sensitivity analysis as the estimation of parameters in MLE for non-ignorable missing data is not generally plausible. An application of our approach to Schizophrenia clinical trial is presented.</p>","PeriodicalId":45581,"journal":{"name":"Applications and Applied Mathematics-An International Journal","volume":"11 1","pages":"83-96"},"PeriodicalIF":0.6000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515546/pdf/nihms836364.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications and Applied Mathematics-An International Journal","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of incomplete data is a common phenomenon in research that involves the longitudinal design approach. We investigate and develop a likelihood-based approach for incomplete longitudinal binary data using the disposition model when the missing value mechanism is non-ignorable. We combined Markov's transition and a logistic regression model to build the dropout process and model the response using conditional logistic regression model. By holding the missingness parameter that is weakly identified constant, we analyzed their effects through a sensitivity analysis as the estimation of parameters in MLE for non-ignorable missing data is not generally plausible. An application of our approach to Schizophrenia clinical trial is presented.

不完全纵向二值数据的分析——不可忽略缺失的组合马尔可夫转移和Logistic模型。
在涉及纵向设计方法的研究中,数据不完整的问题是一个常见的现象。在缺失值机制不可忽略的情况下,利用配置模型研究并开发了一种基于似然的不完全纵向二元数据处理方法。我们将马尔可夫跃迁和逻辑回归模型相结合,构建了辍学过程,并使用条件逻辑回归模型对响应进行建模。通过保持弱识别的缺失参数不变,我们通过灵敏度分析分析了它们的影响,因为不可忽略的缺失数据的MLE参数估计通常是不可信的。介绍了我们的方法在精神分裂症临床试验中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信