High-quality draft genome sequence of a biofilm forming lignocellulolytic Aspergillus niger strain ATCC 10864.

Q3 Biochemistry, Genetics and Molecular Biology
Standards in Genomic Sciences Pub Date : 2017-07-17 eCollection Date: 2017-01-01 DOI:10.1186/s40793-017-0254-2
Sujay Paul, Yvette Ludeña, Gretty K Villena, Fengan Yu, David H Sherman, Marcel Gutiérrez-Correa
{"title":"High-quality draft genome sequence of a biofilm forming lignocellulolytic <i>Aspergillus niger</i> strain ATCC 10864.","authors":"Sujay Paul,&nbsp;Yvette Ludeña,&nbsp;Gretty K Villena,&nbsp;Fengan Yu,&nbsp;David H Sherman,&nbsp;Marcel Gutiérrez-Correa","doi":"10.1186/s40793-017-0254-2","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous fungus <i>Aspergillus niger</i> has high industrial value due to their lignocellulolytic enzyme activities and ATCC 10864 is one of the few type strains of <i>A. niger</i> which has a unique biofilm forming capability. Here we report the first draft genome sequence of <i>A. niger</i> ATCC 10864 strain. The genome of <i>A. niger</i> ATCC 10864 is 36,172,237 bp long and comprise of 310 scaffolds with 49.5% average GC content. A total of 10,804 protein-coding genes were predicted among which 10,761 genes were with putative functions. <i>A. niger</i> ATCC 10864 genome coded for 709 putative carbohydrate active enzyme families distributed in six functional categories and among them glycoside hydrolases (GHs) represent the most number of families (279). Genes that include <i>pepA</i>, <i>brlA</i>, <i>exgA</i>, <i>LaeA</i>, <i>rodA</i>, <i>GCN</i> have also been identified in this study, which may play a role in biofilm formation. This high-quality draft genome sequence will facilitate our understanding of the mechanisms behind fungal biofilm formation and higher lignocellulolytic enzyme production.</p>","PeriodicalId":21965,"journal":{"name":"Standards in Genomic Sciences","volume":"12 ","pages":"37"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40793-017-0254-2","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Standards in Genomic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40793-017-0254-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10

Abstract

Filamentous fungus Aspergillus niger has high industrial value due to their lignocellulolytic enzyme activities and ATCC 10864 is one of the few type strains of A. niger which has a unique biofilm forming capability. Here we report the first draft genome sequence of A. niger ATCC 10864 strain. The genome of A. niger ATCC 10864 is 36,172,237 bp long and comprise of 310 scaffolds with 49.5% average GC content. A total of 10,804 protein-coding genes were predicted among which 10,761 genes were with putative functions. A. niger ATCC 10864 genome coded for 709 putative carbohydrate active enzyme families distributed in six functional categories and among them glycoside hydrolases (GHs) represent the most number of families (279). Genes that include pepA, brlA, exgA, LaeA, rodA, GCN have also been identified in this study, which may play a role in biofilm formation. This high-quality draft genome sequence will facilitate our understanding of the mechanisms behind fungal biofilm formation and higher lignocellulolytic enzyme production.

Abstract Image

Abstract Image

Abstract Image

形成木质纤维素水解黑曲霉菌株ATCC 10864生物膜的高质量基因组序列草图。
丝状真菌黑曲霉具有纤维素水解酶活性,具有很高的工业价值,ATCC 10864是黑曲霉中少数具有独特生物成膜能力的菌株之一。本文报道黑曲霉ATCC 10864菌株基因组序列初稿。黑曲霉ATCC 10864的基因组长36,172,237 bp,由310个支架组成,平均GC含量为49.5%。共预测10,804个蛋白质编码基因,其中10,761个基因具有推测功能。黑曲霉ATCC 10864基因组编码709个碳水化合物活性酶家族,分布在6个功能类别中,其中糖苷水解酶(GHs)家族数量最多(279个)。本研究还发现了pepA、brlA、exgA、LaeA、rodA、GCN等可能在生物膜形成过程中发挥作用的基因。这个高质量的基因组序列草图将有助于我们理解真菌生物膜形成和更高的木质纤维素水解酶生产背后的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Standards in Genomic Sciences
Standards in Genomic Sciences GENETICS & HEREDITY-MICROBIOLOGY
CiteScore
1.44
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信