Mixture model-based association analysis with case-control data in genome wide association studies.

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fadhaa Ali, Jian Zhang
{"title":"Mixture model-based association analysis with case-control data in genome wide association studies.","authors":"Fadhaa Ali,&nbsp;Jian Zhang","doi":"10.1515/sagmb-2016-0022","DOIUrl":null,"url":null,"abstract":"<p><p>Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated disease penetrances. A theoretical justification of the above model is provided. Furthermore, we introduce a hypothesis test for haplotype inheritance patterns which underpin this model. The performance of the proposed approach is evaluated by simulations and real data analysis. The results show that the proposed approach outperforms an existing multiple testing method.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"16 3","pages":"173-187"},"PeriodicalIF":0.8000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0022","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated disease penetrances. A theoretical justification of the above model is provided. Furthermore, we introduce a hypothesis test for haplotype inheritance patterns which underpin this model. The performance of the proposed approach is evaluated by simulations and real data analysis. The results show that the proposed approach outperforms an existing multiple testing method.

全基因组关联研究中基于混合模型的关联分析与病例对照数据。
候选变异的多位点单倍型分析与全基因组关联研究(GWAS)数据可能提供与疾病相关的证据,即使单个位点本身没有。不幸的是,当大量候选变异被研究时,识别风险单倍型是非常困难的。为了应对这一挑战,近年来提出了许多方法。然而,它们中的大多数与单倍型的疾病外显率没有直接联系,因此可能不是有效的。为了填补这一空白,我们提出了一种基于混合模型的方法来检测风险单倍型。在混合模型下,单倍型根据其估计的疾病外显率直接聚类。对上述模型进行了理论论证。此外,我们引入了支持该模型的单倍型遗传模式的假设检验。通过仿真和实际数据分析对该方法的性能进行了评价。结果表明,该方法优于现有的多重测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信