Building an experimental model of the human body with non-physiological parameters.

TECHNOLOGY Pub Date : 2017-03-01 Epub Date: 2017-03-31 DOI:10.1142/S2339547817500029
Joseph M Labuz, Christopher Moraes, David R Mertz, Brendan M Leung, Shuichi Takayama
{"title":"Building an experimental model of the human body with non-physiological parameters.","authors":"Joseph M Labuz,&nbsp;Christopher Moraes,&nbsp;David R Mertz,&nbsp;Brendan M Leung,&nbsp;Shuichi Takayama","doi":"10.1142/S2339547817500029","DOIUrl":null,"url":null,"abstract":"<p><p>New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, <i>in-vitro</i> systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing <i>in-vivo</i>-like cellular metabolic rates is necessary and may be accomplished <i>in-vitro</i> by limiting O<sub>2</sub> availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10<sup>-6</sup>) microfluidic model of the human body.</p>","PeriodicalId":22332,"journal":{"name":"TECHNOLOGY","volume":"5 1","pages":"42-59"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2339547817500029","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2339547817500029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10-6) microfluidic model of the human body.

Abstract Image

Abstract Image

Abstract Image

建立非生理参数的人体实验模型。
工程和生物医学技术的新进展使最近的努力能够在微尺度体外系统中捕捉人体生理学的基本方面。将这些进步应用于综合平台(通常称为“人片上(HOC)”)的复杂过程的实验模型中,需要相关的隔间和参数相对于彼此和整个系统的大小正确。经验观察、资源分配系统的理论处理和自然实验都可以用来为这样一个系统的合理设计提供信息,但是技术和基本挑战(例如,分别是小系统血容量和环境依赖的细胞代谢)构成了实质性的、未解决的障碍。在这里,我们提出了HOC设计的两个基本原则:诱导体内样细胞代谢率是必要的,并且可以通过限制氧气可用性在体外完成;增加血容量对药物浓度的影响可以通过基于药代动力学的溶质分布处理来减轻。将这些原理与自然观察和工程解决方案相结合,我们得出了一套完整的设计标准,用于实际可实现的,生理上忠实的,五器官百万级(× 10-6)人体微流控模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
TECHNOLOGY
TECHNOLOGY ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信