Generalized Confidence Intervals for Intra- and Inter-subject Coefficients of Variation in Linear Mixed-effects Models.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Johannes Forkman
{"title":"Generalized Confidence Intervals for Intra- and Inter-subject Coefficients of Variation in Linear Mixed-effects Models.","authors":"Johannes Forkman","doi":"10.1515/ijb-2016-0093","DOIUrl":null,"url":null,"abstract":"<p><p>Linear mixed-effects models are linear models with several variance components. Models with a single random-effects factor have two variance components: the random-effects variance, i. e., the inter-subject variance, and the residual error variance, i. e., the intra-subject variance. In many applications, it is practice to report variance components as coefficients of variation. The intra- and inter-subject coefficients of variation are the square roots of the corresponding variances divided by the mean. This article proposes methods for computing confidence intervals for intra- and inter-subject coefficients of variation using generalized pivotal quantities. The methods are illustrated through two examples. In the first example, precision is assessed within and between runs in a bioanalytical method validation. In the second example, variation is estimated within and between main plots in an agricultural split-plot experiment. Coverage of generalized confidence intervals is investigated through simulation and shown to be close to the nominal value.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"13 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Linear mixed-effects models are linear models with several variance components. Models with a single random-effects factor have two variance components: the random-effects variance, i. e., the inter-subject variance, and the residual error variance, i. e., the intra-subject variance. In many applications, it is practice to report variance components as coefficients of variation. The intra- and inter-subject coefficients of variation are the square roots of the corresponding variances divided by the mean. This article proposes methods for computing confidence intervals for intra- and inter-subject coefficients of variation using generalized pivotal quantities. The methods are illustrated through two examples. In the first example, precision is assessed within and between runs in a bioanalytical method validation. In the second example, variation is estimated within and between main plots in an agricultural split-plot experiment. Coverage of generalized confidence intervals is investigated through simulation and shown to be close to the nominal value.

线性混合效应模型中主体内和主体间变异系数的广义置信区间。
线性混合效应模型是由多个方差组成的线性模型。具有单个随机效应因子的模型有两个方差成分:随机效应方差,即。,主体间方差,残差方差,即。即主体内方差。在许多应用中,实践是将方差成分报告为变异系数。主体内和主体间的变异系数是相应方差的平方根除以均值。本文提出了用广义枢纽量计算主体内和主体间变异系数置信区间的方法。通过两个实例说明了这些方法。在第一个例子中,在生物分析方法验证的运行内和运行之间评估精度。在第二个例子中,在一个农业分块试验中,估计了主要地块内部和之间的变异。通过仿真研究了广义置信区间的覆盖范围,结果表明广义置信区间的覆盖范围接近于标称值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信