{"title":"Self-consistent gradient flow for shape optimization.","authors":"D Kraft","doi":"10.1080/10556788.2016.1171864","DOIUrl":null,"url":null,"abstract":"<p><p>We present a model for image segmentation and describe a gradient-descent method for level-set based shape optimization. It is commonly known that gradient-descent methods converge slowly due to zig-zag movement. This can also be observed for our problem, especially when sharp edges are present in the image. We interpret this in our specific context to gain a better understanding of the involved difficulties. One way to overcome slow convergence is the use of second-order methods. For our situation, they require derivatives of the potentially noisy image data and are thus undesirable. Hence, we propose a new method that can be interpreted as a self-consistent gradient flow and does not need any derivatives of the image data. It works very well in practice and leads to a far more efficient optimization algorithm. A related idea can also be used to describe the mean-curvature flow of a mean-convex surface. For this, we formulate a mean-curvature Eikonal equation, which allows a numerical propagation of the mean-curvature flow of a surface without explicit time stepping.</p>","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"32 4","pages":"790-812"},"PeriodicalIF":1.4000,"publicationDate":"2017-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10556788.2016.1171864","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556788.2016.1171864","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4
Abstract
We present a model for image segmentation and describe a gradient-descent method for level-set based shape optimization. It is commonly known that gradient-descent methods converge slowly due to zig-zag movement. This can also be observed for our problem, especially when sharp edges are present in the image. We interpret this in our specific context to gain a better understanding of the involved difficulties. One way to overcome slow convergence is the use of second-order methods. For our situation, they require derivatives of the potentially noisy image data and are thus undesirable. Hence, we propose a new method that can be interpreted as a self-consistent gradient flow and does not need any derivatives of the image data. It works very well in practice and leads to a far more efficient optimization algorithm. A related idea can also be used to describe the mean-curvature flow of a mean-convex surface. For this, we formulate a mean-curvature Eikonal equation, which allows a numerical propagation of the mean-curvature flow of a surface without explicit time stepping.
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.