Evi M Mercken, Miriam Capri, Bethany A Carboneau, Maria Conte, Juliana Heidler, Aurelia Santoro, Alejandro Martin-Montalvo, Marta Gonzalez-Freire, Husam Khraiwesh, José A González-Reyes, Ruin Moaddel, Yongqing Zhang, Kevin G Becker, José M Villalba, Julie A Mattison, Ilka Wittig, Claudio Franceschi, Rafael de Cabo
{"title":"Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.","authors":"Evi M Mercken, Miriam Capri, Bethany A Carboneau, Maria Conte, Juliana Heidler, Aurelia Santoro, Alejandro Martin-Montalvo, Marta Gonzalez-Freire, Husam Khraiwesh, José A González-Reyes, Ruin Moaddel, Yongqing Zhang, Kevin G Becker, José M Villalba, Julie A Mattison, Ilka Wittig, Claudio Franceschi, Rafael de Cabo","doi":"10.1038/s41514-017-0009-8","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.</p>","PeriodicalId":19334,"journal":{"name":"NPJ Aging and Mechanisms of Disease","volume":" ","pages":"8"},"PeriodicalIF":5.4000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41514-017-0009-8","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Aging and Mechanisms of Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-017-0009-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.
期刊介绍:
npj Aging and Mechanisms of Disease is an online open access journal that provides a forum for the world’s most important research in the fields of aging and aging-related disease. The journal publishes papers from all relevant disciplines, encouraging those that shed light on the mechanisms behind aging and the associated diseases. The journal’s scope includes, but is not restricted to, the following areas (not listed in order of preference): • cellular and molecular mechanisms of aging and aging-related diseases • interventions to affect the process of aging and longevity • homeostatic regulation and aging • age-associated complications • translational research into prevention and treatment of aging-related diseases • mechanistic bases for epidemiological aspects of aging-related disease.