Claudio Poggio, Matteo Ceci, Riccardo Beltrami, Maria Mirando, Jaffal Wassim, Marco Colombo
{"title":"Color stability of esthetic restorative materials: a spectrophotometric analysis.","authors":"Claudio Poggio, Matteo Ceci, Riccardo Beltrami, Maria Mirando, Jaffal Wassim, Marco Colombo","doi":"10.1080/23337931.2016.1217416","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> The aim of this <i>in vitro</i> study was to evaluate the color stability of different restorative materials (one microfilled composite, one nanofilled composite, one nanohybrid composite and one Ormocer-based composite) after exposure to different staining solutions (coffee, coca-cola and red wine). <b>Material and methods:</b> All materials were polymerized into silicon rings (2 mm ×6 mm ×8 mm) to obtain specimens identical in size. Thirty cylindrical specimens of each material were prepared. They were immersed in staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE <i>L*a*b*</i> system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. The Shapiro-Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. The paired <i>t</i>-test was applied to test which CIE <i>L*a*b*</i> parameters significantly changed after immersion in staining solutions. <b>Results:</b> All restorative materials showed clinically perceptible color differences after immersion in coffee. <i>L*</i> and <i>b*</i> values showed the highest variability. Coca cola and red wine did not influence the color stability for all restorative materials except for Filtek Supreme XTE. <b>Conclusions:</b> Coffee caused a significant color change in all types of tested composite resins. Filtek Supreme XTE demonstrated alone a staining susceptibility to red wine; no other significant differences among the materials were demonstrated. Long-term exposure to some food dyes (coffee in particular) can significantly affect the color stability of modern esthetic restorative materials regardless of materials' different composition.</p>","PeriodicalId":6997,"journal":{"name":"Acta Biomaterialia Odontologica Scandinavica","volume":"2 1","pages":"95-101"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23337931.2016.1217416","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia Odontologica Scandinavica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23337931.2016.1217416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
Objective: The aim of this in vitro study was to evaluate the color stability of different restorative materials (one microfilled composite, one nanofilled composite, one nanohybrid composite and one Ormocer-based composite) after exposure to different staining solutions (coffee, coca-cola and red wine). Material and methods: All materials were polymerized into silicon rings (2 mm ×6 mm ×8 mm) to obtain specimens identical in size. Thirty cylindrical specimens of each material were prepared. They were immersed in staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. The Shapiro-Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. The paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results: All restorative materials showed clinically perceptible color differences after immersion in coffee. L* and b* values showed the highest variability. Coca cola and red wine did not influence the color stability for all restorative materials except for Filtek Supreme XTE. Conclusions: Coffee caused a significant color change in all types of tested composite resins. Filtek Supreme XTE demonstrated alone a staining susceptibility to red wine; no other significant differences among the materials were demonstrated. Long-term exposure to some food dyes (coffee in particular) can significantly affect the color stability of modern esthetic restorative materials regardless of materials' different composition.