Estimating Patient's Health State Using Latent Structure Inferred from Clinical Time Series and Text.

Aaron Zalewski, William Long, Alistair E W Johnson, Roger G Mark, Li-Wei H Lehman
{"title":"Estimating Patient's Health State Using Latent Structure Inferred from Clinical Time Series and Text.","authors":"Aaron Zalewski,&nbsp;William Long,&nbsp;Alistair E W Johnson,&nbsp;Roger G Mark,&nbsp;Li-Wei H Lehman","doi":"10.1109/BHI.2017.7897302","DOIUrl":null,"url":null,"abstract":"<p><p>Modern intensive care units (ICUs) collect large volumes of data in monitoring critically ill patients. Clinicians in the ICUs face the challenge of interpreting large volumes of high-dimensional data to diagnose and treat patients. In this work, we explore the use of Hierarchical Dirichlet Processes (HDP) as a Bayesian nonparametric framework to infer patients' states of health by combining multiple sources of data. In particular, we employ HDP to combine clinical time series and text from the nursing progress notes in a probabilistic topic modeling framework for patient risk stratification. Given a patient cohort, we use HDP to infer latent \"topics\" shared across multimodal patient data from the entire cohort. Each topic is modeled as a multinomial distribution over a vocabulary of codewords, defined over heterogeneous data sources. We evaluate the clinical utility of the learned topic structure using the first 24-hour ICU data from over 17,000 adult patients in the MIMIC-II database to estimate patients' risks of in-hospital mortality. Our results demonstrate that our approach provides a viable framework for combining different data modalities to model patient's states of health, and can potentially be used to generate alerts to identify patients at high risk of hospital mortality.</p>","PeriodicalId":72024,"journal":{"name":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","volume":"2017 ","pages":"449-452"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BHI.2017.7897302","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2017.7897302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Modern intensive care units (ICUs) collect large volumes of data in monitoring critically ill patients. Clinicians in the ICUs face the challenge of interpreting large volumes of high-dimensional data to diagnose and treat patients. In this work, we explore the use of Hierarchical Dirichlet Processes (HDP) as a Bayesian nonparametric framework to infer patients' states of health by combining multiple sources of data. In particular, we employ HDP to combine clinical time series and text from the nursing progress notes in a probabilistic topic modeling framework for patient risk stratification. Given a patient cohort, we use HDP to infer latent "topics" shared across multimodal patient data from the entire cohort. Each topic is modeled as a multinomial distribution over a vocabulary of codewords, defined over heterogeneous data sources. We evaluate the clinical utility of the learned topic structure using the first 24-hour ICU data from over 17,000 adult patients in the MIMIC-II database to estimate patients' risks of in-hospital mortality. Our results demonstrate that our approach provides a viable framework for combining different data modalities to model patient's states of health, and can potentially be used to generate alerts to identify patients at high risk of hospital mortality.

Abstract Image

利用临床时间序列和文本推断的潜在结构估计患者的健康状况。
现代重症监护病房(icu)在监测危重患者时收集了大量数据。icu的临床医生面临着解释大量高维数据以诊断和治疗患者的挑战。在这项工作中,我们探索使用分层狄利克雷过程(HDP)作为贝叶斯非参数框架,通过结合多个数据来源来推断患者的健康状态。特别是,我们使用HDP将临床时间序列和护理进度记录中的文本结合在一个概率主题建模框架中,用于患者风险分层。给定一个患者队列,我们使用HDP来推断来自整个队列的多模式患者数据共享的潜在“主题”。每个主题都建模为在异构数据源上定义的码字词汇表上的多项分布。我们使用MIMIC-II数据库中超过17,000名成年患者的第一个24小时ICU数据来评估学习主题结构的临床效用,以估计患者在院死亡的风险。我们的研究结果表明,我们的方法提供了一个可行的框架,可以结合不同的数据模式来模拟患者的健康状况,并有可能用于生成警报,以识别医院死亡率高的患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信