Regression Guided Deformable Models for Segmentation of Multiple Brain ROIs.

Zhengwang Wu, Sang Hyun Park, Yanrong Guo, Yaozong Gao, Dinggang Shen
{"title":"Regression Guided Deformable Models for Segmentation of Multiple Brain ROIs.","authors":"Zhengwang Wu,&nbsp;Sang Hyun Park,&nbsp;Yanrong Guo,&nbsp;Yaozong Gao,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-47157-0_29","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel method of using regression-guided deformable models for brain regions of interest (ROIs) segmentation. Different from conventional deformable segmentation, which often deforms shape model locally and thus sensitive to initialization, we propose to learn a regressor to explicitly guide the shape deformation, thus eventually improves the performance of ROI segmentation. The regressor is learned via two steps, (1) a joint classification and regression random forest (CRRF) and (2) an auto-context model. The CRRF predicts each voxel's deformation to the nearest point on the ROI boundary as well as each voxel's class label (e.g., ROI <i>versus</i> background). The auto-context model further refines all voxel's deformations (i.e., deformation field) and class labels (i.e., label maps) by considering the neighboring structures. Compared to the conventional random forest regressor, the proposed regressor provides more accurate deformation field estimation and thus more robust in guiding deformation of the shape model. Validated in segmentation of 14 midbrain ROIs from the IXI dataset, our method outperforms the state-of-art multi-atlas label fusion and classification methods, and also significantly reduces the computation cost.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":" ","pages":"237-245"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-47157-0_29","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-47157-0_29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a novel method of using regression-guided deformable models for brain regions of interest (ROIs) segmentation. Different from conventional deformable segmentation, which often deforms shape model locally and thus sensitive to initialization, we propose to learn a regressor to explicitly guide the shape deformation, thus eventually improves the performance of ROI segmentation. The regressor is learned via two steps, (1) a joint classification and regression random forest (CRRF) and (2) an auto-context model. The CRRF predicts each voxel's deformation to the nearest point on the ROI boundary as well as each voxel's class label (e.g., ROI versus background). The auto-context model further refines all voxel's deformations (i.e., deformation field) and class labels (i.e., label maps) by considering the neighboring structures. Compared to the conventional random forest regressor, the proposed regressor provides more accurate deformation field estimation and thus more robust in guiding deformation of the shape model. Validated in segmentation of 14 midbrain ROIs from the IXI dataset, our method outperforms the state-of-art multi-atlas label fusion and classification methods, and also significantly reduces the computation cost.

Abstract Image

Abstract Image

Abstract Image

多脑roi分割的回归导向形变模型。
本文提出了一种利用回归引导的可变形模型分割大脑感兴趣区域的新方法。传统的变形分割通常会使形状模型局部变形,对初始化很敏感,与此不同,我们提出学习一个回归量来明确地引导形状变形,从而提高ROI分割的性能。回归量通过两个步骤学习,(1)联合分类和回归随机森林(CRRF)和(2)自动上下文模型。CRRF预测每个体素的变形到ROI边界上最近的点,以及每个体素的类标签(例如,ROI与背景)。自动上下文模型通过考虑相邻结构进一步细化所有体素的变形(即变形场)和类标签(即标签映射)。与传统的随机森林回归量相比,该回归量提供了更精确的变形场估计,从而在指导形状模型变形方面具有更强的鲁棒性。通过对IXI数据集中14个中脑roi的分割验证,该方法优于当前的多图谱标签融合和分类方法,并且显著降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信