Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations.

Finale Doshi-Velez, George Konidaris
{"title":"Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations.","authors":"Finale Doshi-Velez,&nbsp;George Konidaris","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Control applications often feature tasks with similar, but not identical, dynamics. We introduce the Hidden Parameter Markov Decision Process (HiP-MDP), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors, and introduce a semiparametric regression approach for learning its structure from data. We show that a learned HiP-MDP rapidly identifies the dynamics of new task instances in several settings, flexibly adapting to task variation.</p>","PeriodicalId":73334,"journal":{"name":"IJCAI : proceedings of the conference","volume":"2016 ","pages":"1432-1440"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466173/pdf/nihms859880.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCAI : proceedings of the conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Control applications often feature tasks with similar, but not identical, dynamics. We introduce the Hidden Parameter Markov Decision Process (HiP-MDP), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors, and introduce a semiparametric regression approach for learning its structure from data. We show that a learned HiP-MDP rapidly identifies the dynamics of new task instances in several settings, flexibly adapting to task variation.

Abstract Image

Abstract Image

隐参数马尔可夫决策过程:一种发现潜在任务参数化的半参数回归方法。
控制应用程序通常具有类似但不完全相同的动态任务。我们介绍了隐参数马尔可夫决策过程(HiP-MDP),这是一个将具有低维潜在因素集的相关动力系统参数化的框架,并介绍了从数据中学习其结构的半参数回归方法。我们证明了学习后的HiP-MDP可以快速识别不同环境下新任务实例的动态,灵活地适应任务的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信