Methods for studying the metabolic basis of Drosophila development.

Q1 Biochemistry, Genetics and Molecular Biology
Hongde Li, Jason M Tennessen
{"title":"Methods for studying the metabolic basis of Drosophila development.","authors":"Hongde Li, Jason M Tennessen","doi":"10.1002/wdev.280","DOIUrl":null,"url":null,"abstract":"<p><p>The field of metabolic research has experienced an unexpected renaissance. While this renewed interest in metabolism largely originated in response to the global increase in diabetes and obesity, studies of metabolic regulation now represent the frontier of many biomedical fields. This trend is especially apparent in developmental biology, where metabolism influences processes ranging from stem cell differentiation and tissue growth to sexual maturation and reproduction. In this regard, the fruit fly Drosophila melanogaster has emerged as a powerful tool for dissecting conserved mechanisms that underlie developmental metabolism, often with a level of detail that is simply not possible in other animals. Here we describe why the fly is an ideal system for exploring the relationship between metabolism and development, and outline a basic experimental strategy for conducting these studies. WIREs Dev Biol 2017, 6:e280. doi: 10.1002/wdev.280 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"6 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.280","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 23

Abstract

The field of metabolic research has experienced an unexpected renaissance. While this renewed interest in metabolism largely originated in response to the global increase in diabetes and obesity, studies of metabolic regulation now represent the frontier of many biomedical fields. This trend is especially apparent in developmental biology, where metabolism influences processes ranging from stem cell differentiation and tissue growth to sexual maturation and reproduction. In this regard, the fruit fly Drosophila melanogaster has emerged as a powerful tool for dissecting conserved mechanisms that underlie developmental metabolism, often with a level of detail that is simply not possible in other animals. Here we describe why the fly is an ideal system for exploring the relationship between metabolism and development, and outline a basic experimental strategy for conducting these studies. WIREs Dev Biol 2017, 6:e280. doi: 10.1002/wdev.280 For further resources related to this article, please visit the WIREs website.

Abstract Image

Abstract Image

果蝇发育代谢基础的研究方法。
代谢研究领域经历了一次意想不到的复兴。虽然这种对代谢的新兴趣很大程度上源于对全球糖尿病和肥胖症增加的反应,但代谢调节的研究现在代表了许多生物医学领域的前沿。这一趋势在发育生物学中尤为明显,在发育生物学中,新陈代谢影响着从干细胞分化和组织生长到性成熟和生殖的过程。在这方面,果蝇黑腹果蝇已经成为一个强大的工具,用于解剖发育代谢背后的保守机制,通常具有其他动物根本不可能具备的细节水平。在这里,我们描述了为什么苍蝇是探索代谢和发育之间关系的理想系统,并概述了进行这些研究的基本实验策略。中国生物医学工程学报,2017,26(6):559 - 564。doi: 10.1002 / wdev.280有关与本文相关的更多资源,请访问WIREs网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信