A Karimi, S Joukar, H Najafipour, Y Masoumi-Ardakani, B Shahouzehi
{"title":"Low-intensity endurance exercise plus nandrolone decanoate modulates cardiac adiponectin and its receptors.","authors":"A Karimi, S Joukar, H Najafipour, Y Masoumi-Ardakani, B Shahouzehi","doi":"10.1111/aap.12056","DOIUrl":null,"url":null,"abstract":"<p><p>Vast adverse effects of anabolic-androgenic steroids (AASs) on athletes' cardiovascular systems have been reported. However, there is still a lack of adequate information regarding the pathways and mechanisms involved. We tested the hypothesis that adiponectin and its receptors in the heart may be affected by long-term use of AASs alongside exercising. Male Wistar rats were randomized into the control (CTL), exercise (EX), nandrolone (Nan), arachis (Arach) group which treated with arachis as vehicle, trained vehicle (EX+Arach) and trained nandrolone (EX+Nan) groups that were treated for 8 weeks. One day after the end of the protocol, animals were sacrificed and their hearts were frozen. TNF-α and adiponectin proteins of hearts were evaluated quantitatively by ELISA kits, and Western blot analysis was used for measuring adiponectin receptor protein expression. TNF-α protein increased significantly in the EX+Nan group (P<.05 vs CTL group). The AdipoR1 protein was significantly higher in the presence of nandrolone alongside exercise (P<.05 vs Nan and EX+Arach groups, P<.01 vs CTL and Arach groups). In addition, AdipoR2 protein enhanced in the EX+Nan group when compared with the other groups (P<.05 vs EX and EX+Arach groups, P<.01 vs CTL, Arach and Nan groups). Chronic nandrolone plus mild endurance exercise may be associated with imbalance in pro-/anti-inflammatory cytokines and may induce a positive modulatory effect on cardiac adiporeceptors in rat. Further studies are required before these findings can be generalized to humans.</p>","PeriodicalId":8872,"journal":{"name":"Autonomic & autacoid pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/aap.12056","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic & autacoid pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/aap.12056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Vast adverse effects of anabolic-androgenic steroids (AASs) on athletes' cardiovascular systems have been reported. However, there is still a lack of adequate information regarding the pathways and mechanisms involved. We tested the hypothesis that adiponectin and its receptors in the heart may be affected by long-term use of AASs alongside exercising. Male Wistar rats were randomized into the control (CTL), exercise (EX), nandrolone (Nan), arachis (Arach) group which treated with arachis as vehicle, trained vehicle (EX+Arach) and trained nandrolone (EX+Nan) groups that were treated for 8 weeks. One day after the end of the protocol, animals were sacrificed and their hearts were frozen. TNF-α and adiponectin proteins of hearts were evaluated quantitatively by ELISA kits, and Western blot analysis was used for measuring adiponectin receptor protein expression. TNF-α protein increased significantly in the EX+Nan group (P<.05 vs CTL group). The AdipoR1 protein was significantly higher in the presence of nandrolone alongside exercise (P<.05 vs Nan and EX+Arach groups, P<.01 vs CTL and Arach groups). In addition, AdipoR2 protein enhanced in the EX+Nan group when compared with the other groups (P<.05 vs EX and EX+Arach groups, P<.01 vs CTL, Arach and Nan groups). Chronic nandrolone plus mild endurance exercise may be associated with imbalance in pro-/anti-inflammatory cytokines and may induce a positive modulatory effect on cardiac adiporeceptors in rat. Further studies are required before these findings can be generalized to humans.