Comparing Four Methods for Estimating Tree-Based Treatment Regimes.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Aniek Sies, Iven Van Mechelen
{"title":"Comparing Four Methods for Estimating Tree-Based Treatment Regimes.","authors":"Aniek Sies,&nbsp;Iven Van Mechelen","doi":"10.1515/ijb-2016-0068","DOIUrl":null,"url":null,"abstract":"<p><p>When multiple treatment alternatives are available for a certain psychological or medical problem, an important challenge is to find an optimal treatment regime, which specifies for each patient the most effective treatment alternative given his or her pattern of pretreatment characteristics. The focus of this paper is on tree-based treatment regimes, which link an optimal treatment alternative to each leaf of a tree; as such they provide an insightful representation of the decision structure underlying the regime. This paper compares the absolute and relative performance of four methods for estimating regimes of that sort (viz., Interaction Trees, Model-based Recursive Partitioning, an approach developed by Zhang et al. and Qualitative Interaction Trees) in an extensive simulation study. The evaluation criteria were, on the one hand, the expected outcome if the entire population would be subjected to the treatment regime resulting from each method under study and the proportion of clients assigned to the truly best treatment alternative, and, on the other hand, the Type I and Type II error probabilities of each method. The method of Zhang et al. was superior regarding the first two outcome measures and the Type II error probabilities, but performed worst in some conditions of the simulation study regarding Type I error probabilities.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"13 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0068","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0068","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 16

Abstract

When multiple treatment alternatives are available for a certain psychological or medical problem, an important challenge is to find an optimal treatment regime, which specifies for each patient the most effective treatment alternative given his or her pattern of pretreatment characteristics. The focus of this paper is on tree-based treatment regimes, which link an optimal treatment alternative to each leaf of a tree; as such they provide an insightful representation of the decision structure underlying the regime. This paper compares the absolute and relative performance of four methods for estimating regimes of that sort (viz., Interaction Trees, Model-based Recursive Partitioning, an approach developed by Zhang et al. and Qualitative Interaction Trees) in an extensive simulation study. The evaluation criteria were, on the one hand, the expected outcome if the entire population would be subjected to the treatment regime resulting from each method under study and the proportion of clients assigned to the truly best treatment alternative, and, on the other hand, the Type I and Type II error probabilities of each method. The method of Zhang et al. was superior regarding the first two outcome measures and the Type II error probabilities, but performed worst in some conditions of the simulation study regarding Type I error probabilities.

比较四种评估树基处理方案的方法。
当某种心理或医学问题有多种治疗方案可用时,一个重要的挑战是找到一个最佳治疗方案,根据每个患者的预处理特征模式,为每个患者指定最有效的治疗方案。本文的重点是基于树木的治疗制度,它链接一个最佳的治疗方案,每片叶子的树;就其本身而言,它们提供了对该政权背后的决策结构的深刻描述。本文在一项广泛的仿真研究中比较了四种估计这类制度的绝对性能和相对性能(即交互树,基于模型的递归划分,由Zhang等人开发的方法和定性交互树)。评估标准是,一方面,如果整个人群将接受由所研究的每种方法产生的治疗方案的预期结果,以及分配给真正最佳治疗方案的客户比例,另一方面,每种方法的I型和II型错误概率。Zhang等人的方法在前两个结果测量和第二类误差概率方面表现较好,但在第一类误差概率模拟研究的某些条件下表现较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信